A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite

YANG Tingting CHEN Zhongbiao HE Yijun

杨婷婷, 陈忠彪, 何宜军. 一种利用SMOS卫星观测的海表面盐度反演海水盐度廓线的方法[J]. 海洋学报英文版, 2015, 34(9): 85-93. doi: 10.1007/s13131-015-0735-3
引用本文: 杨婷婷, 陈忠彪, 何宜军. 一种利用SMOS卫星观测的海表面盐度反演海水盐度廓线的方法[J]. 海洋学报英文版, 2015, 34(9): 85-93. doi: 10.1007/s13131-015-0735-3
YANG Tingting, CHEN Zhongbiao, HE Yijun. A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite[J]. Acta Oceanologica Sinica, 2015, 34(9): 85-93. doi: 10.1007/s13131-015-0735-3
Citation: YANG Tingting, CHEN Zhongbiao, HE Yijun. A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite[J]. Acta Oceanologica Sinica, 2015, 34(9): 85-93. doi: 10.1007/s13131-015-0735-3

一种利用SMOS卫星观测的海表面盐度反演海水盐度廓线的方法

doi: 10.1007/s13131-015-0735-3

A new method to retrieve salinity profiles from sea surface salinity observed by SMOS satellite

  • 摘要: 本文提出了一种利用SMOS卫星观测的海表面盐度反演海水盐度廓线的新方法。首先利用经验正交函数分析Argo浮标观测的盐度廓线来获得盐度廓线的主要模态,然后提出两种统计模型来估算各模态的时间系数。第一种是线性模型,建立了SMOS观测的表面盐度与Argo观测的表面盐度之间的关系,进而建立SMOS的观测值与时间系数之间的线性关系;第二种是非线性模型,利用神经网络建立时间系数与SMOS观测的盐度、观测时间、观测区域的经度和纬度之间的关系。与Argo测量的盐度廓线作比较,利用线性模型和非线性模型反演的上层400米盐度的均方根误差分别为0.08-0.16和0.08-0.14,分别比气候态平均值小0.01-0.07和0.01-0.09。最后分析了本方法的误差来源。
  • Agarwal N, Sharma R, Basu S, et al. 2007. Derivation of salinity profiles in the Indian Ocean from satellite surface observations. IEEE Geoscience and Remote Sensing Letters, 4(2): 322-325
    Argo Science Team. 2001. Report of the Argo Science Team Second Meeting. In: Koblinsky C J, Smith N R, eds. Argo: The global array of profiling floats, in Observing the Oceans in the 21st Century. Melbourne: GODAE Project Office, Bureau of Meteorology, 248-258
    Ballabrera-Poy J, Mourre B, Garcia-Ladona E, et al. 2009. Linear and non-linear T-S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep-Sea Research Part I: Oceanographic Research Papers, 56(10): 1605-1614
    Boutin J, Martin N. 2006. Argo upper salinity measurements: Perspectives for L-band radiometers calibration and retrieved sea surface salinity validation. IEEE Geoscience and Remote Sensing Letters, 3(2): 202-206
    Boutin J, Martin N, Reverdin G, et al. 2013. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Science, 9(1): 183-192
    Carnes M R, Teague W J, Mitchell J L. 1994. Inference of subsurface thermohaline structure from fields measurable by satellite. Journal of Atmospheric and Oceanographic Techology, 11(2): 551-566
    Emery W J. 1975. Dynamic height from temperature profiles. Journal of Physical Oceanography, 5(2): 369-375
    Emery W J, Wert R T. 1976. Temperature-salinity curves in the Pacific and their application to dynamic height computation. Journal of Physical Oceanography, 6(4): 613-617
    Halldor B, Venegas S A. 1997. A manual for EOF and SVD analyses of climatic data. In: CCGCR Rep. Montreal, QC, Canada: McGill Univ, 54
    Hansen D V, Thacker Carlisle W. 1999. Estimation of salinity profiles in the upper ocean. Journal of Geophysical Research, 104(C4): 7291-7933
    Henocq C, Boutin J, Petitcolin F, et al. 2010. Vertical variability of near-surface salinity in the tropics: Consequences for L-band radiometer calibration and validation. Journal of Atmospheric and Oceanic Techology, 27(1): 192-209
    Hosoda S, Ohira T, Nakamura T. 2008. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev, 8: 47-59
    Hsieh W W, Tang Benyang. 1998. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society, 79(9): 1855-1870
    Khedouri E, Szczechowski C, Cheney R E. 1983. Potential oceanographic applications of satellite altimetry for inferring subsurface thermal structure. In: Proceedings of the OCEANS'83. San Francisco, CA, US: IEEE, 274-280
    Levitus S, Boyer T P. 1994. Temperature. In: World Ocean Atlas, 117. NOAA Atlas NESDIS 3
    Levitus S, Burgett R, Boyer T P. 1994. Salinity. In: World Ocean Atlas, 97. NOAA Atlas NESDIS 3
    Mecklenburg S, Drusch M, Kerr Y H, et al. 2012. ESA's soil moisture and ocean salinity mission: Mission performance and operations. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1354-1366
    Monahan A H, Fyfe J C, Ambaum M H P, et al. 2009. Empirical orthogonal functions: The medium is the message. Journal of Climate, 22(24): 6501-6514
    Reul N, Chapron B, Lee T, et al. 2014. Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor. Geophysical Research Letters, 41(9): 3141-3148
    Reul N, Tenerelli J, Boutin J, et al. 2012. Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half of 2010. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1636-1647
    Steel R G D, Torrie J H. 1960. Principles and Procedures of Statistics with Special Reference to the Biological Sciences. New York: McGraw Hill
    Vossepoel F C, Reynolds R W, Miller L. 1999. Use of sea level observations to estimate salinity variability in the tropical Pacific. Journal of Atmospheric and Oceanoic Techology, 16(10): 1401-1415
    Wong A, Keeley R, Carval T, et al. 2013. ARGO Quality Control Manual (Version 2.9). Argo Data Management
    Yin Xiaobin, Boutin J, Spurgeon P. 2012. First assessment of SMOS data over open ocean: Part I—Pacific Ocean. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1648-1661
  • 加载中
计量
  • 文章访问数:  1327
  • HTML全文浏览量:  73
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-23
  • 修回日期:  2015-02-28

目录

    /

    返回文章
    返回