Microbial community structure of Arctic seawater as revealed by pyrosequencing

LI Yang WANG Zhen LIN Xuezheng

李阳, 王桢, 林学政. 通过焦磷酸测序揭示北极海水的微生物群落结构[J]. 海洋学报英文版, 2016, 35(6): 78-84. doi: 10.1007/s13131-015-0742-4
引用本文: 李阳, 王桢, 林学政. 通过焦磷酸测序揭示北极海水的微生物群落结构[J]. 海洋学报英文版, 2016, 35(6): 78-84. doi: 10.1007/s13131-015-0742-4
LI Yang, WANG Zhen, LIN Xuezheng. Microbial community structure of Arctic seawater as revealed by pyrosequencing[J]. Acta Oceanologica Sinica, 2016, 35(6): 78-84. doi: 10.1007/s13131-015-0742-4
Citation: LI Yang, WANG Zhen, LIN Xuezheng. Microbial community structure of Arctic seawater as revealed by pyrosequencing[J]. Acta Oceanologica Sinica, 2016, 35(6): 78-84. doi: 10.1007/s13131-015-0742-4

通过焦磷酸测序揭示北极海水的微生物群落结构

doi: 10.1007/s13131-015-0742-4

Microbial community structure of Arctic seawater as revealed by pyrosequencing

  • 摘要: 这项研究的目的在于确定北极海水浮冰区内(ICE-1)和浮冰区外(FUBIAO)的微生物群落结构。将近10 L海水用孔径为0.2μm的Whatman滤膜过滤后提取环境基因组DNA并用焦磷酸测序对其微生物群落进行详细研究。微生物群落结构分析表明两个样本在细菌、古菌和真核生物中存在高度多样性。两样本中变形菌门和拟杆菌门是主要的浮游细菌群落,相对丰度分别为51.29% 和 35.39% (FUBIAO), 72.95%和 23.21%(ICE-1)。古菌门中最丰富的是广古菌门,相对丰度分别为100% (FUBIAO)和60%(ICE-1)。真核生物中,FUBIAO中含量最丰富的为没有明确分类的真核生物,节肢动物以及没有明确分类的后生动物,三者占据了85.29%;ICE-1中含量最丰富的为没有明确分类的真核生物及没有明确分类的后生动物,达到读取总量的90.69%。α-变形菌、黄杆菌及γ-变形菌是两个样本中纲水平上含量最丰富的三种细菌,同时,在97%相似度水平上,两样本中细菌、古菌以及真核生物中前十中最丰富的OTUs也存在很大不同。
  • Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat Rev Microbiol, 5(10): 782-791
    Albers S V, Pohlschr.der M. 2009. Diversity of archaeal type IV pilin-like structures. Extremophiles, 13(3): 403-410
    Bowman J S, Rasmussen S, Blom N, et al. 2012. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J, 6(1): 11-20
    Bowman J P, McCammon S A, Brown M V, et al. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol, 63(8): 3068-3078
    Brinkmeyer R, Knittel K, Jürgens J, et al. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol, 69(11): 6610-6619
    Carmack E, Wassmann P. 2008. Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and compre-hensive perspectives. Prog Oceanogr, 71(2-4): 446-477
    Chaban B, Ng S Y, Jarrell K F. 2006. Archaeal habitats-from the ex-treme to the ordinary. Can J Microbiol, 52(2): 73-116
    Chun J, Kim K Y, Lee J H, et al. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Micro-biol, 10(1): 101
    Comeau A M, Li W K W, Tremblay J é, et al. 2011. Arctic Ocean micro-bial community structure before and after the 2007 record sea ice minimum. PLoS One, 6(11): e27492
    Cottrell M T, Kirchman D L. 2000. Community composition of mar-ine bacterioplankton determined by 16S rRNA gene clone lib-raries and fluorescence in situ hybridization. Appl Environ Mi-crobiol, 66(12): 5116-5122
    Crump B C, Adams H E, Hobbie J E, et al. 2007. Biogeography of bac-terioplankton in lakes and streams of an Arctic tundra catch-ment. Ecology, 88(6): 1365-1378
    Darling K F, Kucera M, Pudsey C J, et al. 2004. Molecular evidence links cryptic diversification in polar planktonic protists to Qua-ternary climate dynamics. Proc Natl Acad Sci USA, 101(20): 7657-7662
    Dowd S E, Callaway T R, Wolcott R D, et al. 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacteri-al tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol, 8: 125
    Fuhrman J A. 2009. Microbial community structure and its functional implications. Nature, 459: 193-199
    Galand P E, Casamayor E O, Kirchman D L, et al. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA, 106(52): 22427-22432
    Junge K, Imhoff F, Staley T, et al. 2002. Phylogenetic diversity of nu-merically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol, 43(3): 315-328
    Kirchman D L, Cottrell M T, Lovejoy C. 2010. The structure of bacteri-al communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol, 12(5): 1132-1143
    Kirchman D L, Elifantz H, Dittel A I, et al. 2007. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr, 52(2): 495-507
    Li An, Chu Ya'nan, Wang Xumin, et al. 2013. A pyrosequencing-based metagenomic study of methane-producing microbial com-munity in solid-state biogas reactor. Biotechnol Biofuels, 6(1): 3
    Lovejoy C, Potvin M. 2011. Microbial eukaryotic distribution in a dy-namic Beaufort Sea and the Arctic Ocean. J Plankton Res, 33(3): 431-444
    Mou Xiaozhen, Sun Shulei, Edwards R A, et al. 2008. Bacterial carbon processing by generalist species in the coastal ocean. Nature, 451: 708-711
    Muller F, Brissac T, Le B N, et al. 2010. First description of giant Ar-chaea (Thaumarchaeota) associated with putative bacterial ec-tosymbionts in a sulfidic marine habitat. Environ Microbiol, 12(8): 2371-2383
    Naganuma T, Kimura H, Karimoto R, et al. 2006. Abundance of planktonic thraustochytrids and bacteria and the concentra-tion of particulate ATP in the Greenland and Norwegian Seas. Polar Biosci, 20: 37-45
    Pearce D A, Van Der Gast C J, Lawley B, et al. 2003. Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol, 45(1): 59-70
    Pedrós-Alió C. 2006. Marine microbial diversity: can it be determ-ined?. Trends Microbiol, 14(6): 257-263
    Pester M, Schleper C, Michael W. 2011. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol, 14(3): 300-306
    Petri R, Imholff J F. 2001. Genetic analysis of sea-ice bacterial com-munities of the western Baltic Sea using an improved double gradient method. Polar Biol, 24(4): 252-257
    Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 41: D590-D596
    Rappé M S, Giovannoni S J. 2003. The uncultured microbial majority. Annu Rev Microbiol, 57: 369-394
    Reddy P V V, Rao S S S N, Pratibha M S, et al. 2009. Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovenbreen glacier, an Arctic glacier. Res Microbiol, 160(8): 538-546
    Sala M M, Arrieta J M, Boras J A, et al. 2010. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol, 33(12): 1683-1694
    Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464: 1334-1337
    Shivaji S, Kumari K, Kishore K H, et al. 2011. Vertical distribution of bacteria in a lake sediment from Antarctica by culture-inde-pendent and culture-dependent approaches. Res Microbiol, 162(2): 191-203
    Sogin M L, Morrison H G, Huber J A, et al. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA, 103(32): 12115-12120
    Tedersoo L, Nilsson R H, Abarenkov K, et al. 2010. 454 Pyrosequen-cing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol, 188(1): 291-301
    Wu Shangong, Wang Guitang, Angert E R, et al. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7(2): e30440
    Yin Qi, Fu Bingbing, Li Bingyu, et al. 2013. Spatial variations in micro-bial community composition in surface seawater from the ul-tra-oligotrophic center to rim of the South Pacific Gyre. PLoS One, 8(2): e55148
    Zeng Yinxin, Zhang Fang, He Jianfeng, et al. 2013. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie van Leeuwenhoek, 103(6): 1309-1319
    Zeng Yinxin, Zou Yang, Grebmeier J M, et al. 2012. Culture-inde-pendent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol, 35(1): 117-129
  • 加载中
计量
  • 文章访问数:  1164
  • HTML全文浏览量:  57
  • PDF下载量:  1023
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-09
  • 修回日期:  2015-08-07

目录

    /

    返回文章
    返回