An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

WANG Yong GAO Zhaoming XU Ying LI Guangyu HE Lisheng QIAN Peiyuan

王勇, 高兆明, 徐颖, 李光玉, 贺丽生, 钱培元. MALBAC技术扩增微生物群落基因组的效率评估[J]. 海洋学报英文版, 2016, 35(2): 131-136. doi: 10.1007/s13131-015-0781-x
引用本文: 王勇, 高兆明, 徐颖, 李光玉, 贺丽生, 钱培元. MALBAC技术扩增微生物群落基因组的效率评估[J]. 海洋学报英文版, 2016, 35(2): 131-136. doi: 10.1007/s13131-015-0781-x
WANG Yong, GAO Zhaoming, XU Ying, LI Guangyu, HE Lisheng, QIAN Peiyuan. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community[J]. Acta Oceanologica Sinica, 2016, 35(2): 131-136. doi: 10.1007/s13131-015-0781-x
Citation: WANG Yong, GAO Zhaoming, XU Ying, LI Guangyu, HE Lisheng, QIAN Peiyuan. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community[J]. Acta Oceanologica Sinica, 2016, 35(2): 131-136. doi: 10.1007/s13131-015-0781-x

MALBAC技术扩增微生物群落基因组的效率评估

doi: 10.1007/s13131-015-0781-x

An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

  • 摘要: 环境样品的低生物量是微生物宏基因组学研究面临的首要挑战,通过基因组扩增技术来满足高通量测序对DNA样品量的需求是最常用的解决策略。MALBAC(Multiple Annealing and Looping Based Amplification Cycles)基因组扩增试剂盒最初为扩增和研究哺乳动物的单细胞基因组而研发。本文中,我们通过人工构建的微生物群落来检测该试剂盒在微生物宏基因组扩增方面的效率和应用可行性。结果表明,每个标准反应中,10 pg的DNA模板量足以满足MALBAC试剂盒对样品扩增的需要。每个标准反应DNA模板用量为10和100 pg时,所扩增DNA样品的基因组覆盖度与原始未扩增样品表现出高度的一致性,证明MALBAC试剂盒扩增效果的高度稳定性和一致性。常用的GenomePlex全基因组扩增试剂盒使我们可以在每个标准反应DNA模板量为100 pg的条件下扩增获得足够的DNA样品,但是结果表明该参照试剂盒无法有效的实现对群落中低丰度细菌菌株基因组的线性扩增。对于MALBAC试剂盒和参照试剂盒而言,在扩增高GC含量的微生物物种基因组DNA方面效率低下。我们的实验结果表明MALBAC试剂盒在高效扩增环境样品宏基因组DNA方面的可行性,但对该试剂盒在扩增环境样品中高GC含量微生物物种方面的适用性存在疑虑。
  • Abbai N S, Govender A, Shaik R, et al. 2012. Pyrosequence analysis of unamplified and whole genome amplified DNA from hydrocar-bon-contaminated groundwater. Molecular Biotechnology, 50(1): 39-48
    Albertsen M, Hugenholtz P, Skarshewski A, et al. 2013. Genome se-quences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechno-logy, 31(6): 533-538
    Bergen A W, Haque K A, Qi Ying, et al. 2005. Comparison of yield and genotyping performance of multiple displacement amplifica-tion and OmniPlexTM whole genome amplified DNA generated from multiple DNA sources. Human Mutation, 26(3): 262-270
    Dean F B, Hosono S, Fang Linhua, et al. 2002. Comprehensive hu-man genome amplification using multiple displacement ampli-fication. Proceedings of the National Academy of Sciences of the United States of America, 99(8): 5261-5266
    Dean F B, Nelson J R, Giesler T L, et al. 2001. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Re-search, 11(6): 1095-1099
    Direito S O L, Zaura E, Little M, et al. 2014. Systematic evaluation of bias in microbial community profiles induced by whole gen-ome amplification. Environmental Microbiology, 16(3): 643-657
    Huson D H, Mitra S, Ruscheweyh H J, et al. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Re-search, 21(9): 1552-1560
    Hyatt D, Chen GwoLiang, Locascio P F, et al. 2010. Prodigal: proka-ryotic gene recognition and translation initiation site identifica-tion. BMC Bioinformatics, 11(1): 119, doi: 10.1186/1471-2105-11-119
    Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357-359 Langmore J P. 2002. Rubicon Genomics, Inc. Pharmacogenomics, 3(4): 557-560
    Lasken R S, Stockwell T B. 2007. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. BMC Biotechnology, 7(1): 19, doi: 10.1186/1472-6750-7-19
    Li Heng, Handsaker B, Wysoker A, et al. 2009. The sequence align-ment/map format and SAMtools. Bioinformatics, 25(16): 2078-2079
    Logares R, Haverkamp T H A, Kumar S, et al. 2012. Environmental microbiology through the lens of high-throughput DNA se-quencing: Synopsis of current platforms and bioinformatics ap-proaches. Journal of Microbiological Methods, 91(1): 106-113
    Patel R K, Jain M. 2012. NGS QC toolkit: A toolkit for quality control of next generation sequencing data. Plos One, 7(2): e30619
    Pinard R, de Winter A, Sarkis G J, et al. 2006. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics, 7(1): 216, doi: 10.1186/1471-2164-7-216
    Raghunathan A, Ferguson H R Jr, Bornarth C J, et al. 2005. Genomic DNA amplification from a single bacterium. Applied and Envir-onmental Microbiology, 71(6): 3342-3347
    Shi Binhai, Arunpairojana V, Palakawong S, et al. 2002. Tistrella mo-bilis gen. nov., sp. nov., a novel polyhydroxyalkanoate-produ-cing bacterium belonging to α-Proteobacteria. The Journal of General and Applied Microbiology, 48(6): 335-343
    Shieh W Y, Lin Yute, Jean W D. 2004. Pseudovibrio denitrificans gen.
    nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. International Journal of Systematic and Evolutionary Microbiology, 54(6): 2307-2312
    Simpson J T, Wong K, Jackman S D, et al. 2009. ABySS: a parallel as-sembler for short read sequence data. Genome Research, 19(6): 1117-1123
    Spits C, Le Caignec C, De Rycke M, et al. 2006. Optimization and eval-uation of single-cell whole-genome multiple displacement amplification. Human Mutation, 27(5): 496-503
    Uda A, Tanabayashi K, Fujita O, et al. 2007. Comparison of whole genome amplification methods for detecting pathogenic bac-terial genomic DNA using microarray. Japanese Journal of In-fectious Diseases, 60(6): 355-361
    Yilmaz S, Allgaier M, Hugenholtz P. 2010. Multiple displacement amplification compromises quantitative analysis of metagen-omes. Nature Methods, 7(12): 943-944
    Zhang Kun, Martiny A C, Reppas N B, et al. 2006. Sequencing gen-omes from single cells by polymerase cloning. Nature Biotech-nology, 24(6): 680-686
    Zong Chenghang, Lu Sijia, Chapman A R, et al. 2012. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338(6114): 1622-1626
  • 加载中
计量
  • 文章访问数:  1406
  • HTML全文浏览量:  59
  • PDF下载量:  920
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 修回日期:  2014-12-26

目录

    /

    返回文章
    返回