Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation

LÜ Haibin XIE Jieshuo YAO Yuan XU Jiexin CHEN Zhiwu HE Yinghui CAI Shuqun

吕海滨, 谢皆烁, 姚远, 许洁馨, 陈植武, 何映晖, 蔡树群. 抛物线型背景流对内孤立波特征和能量影响的数值模拟研究[J]. 海洋学报英文版, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4
引用本文: 吕海滨, 谢皆烁, 姚远, 许洁馨, 陈植武, 何映晖, 蔡树群. 抛物线型背景流对内孤立波特征和能量影响的数值模拟研究[J]. 海洋学报英文版, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4
LÜ Haibin, XIE Jieshuo, YAO Yuan, XU Jiexin, CHEN Zhiwu, HE Yinghui, CAI Shuqun. Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation[J]. Acta Oceanologica Sinica, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4
Citation: LÜ Haibin, XIE Jieshuo, YAO Yuan, XU Jiexin, CHEN Zhiwu, HE Yinghui, CAI Shuqun. Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation[J]. Acta Oceanologica Sinica, 2016, 35(1): 1-10. doi: 10.1007/s13131-016-0790-4

抛物线型背景流对内孤立波特征和能量影响的数值模拟研究

doi: 10.1007/s13131-016-0790-4

Effect of background parabolic current on characteristics and energetics of internal solitary waves by numerical simulation

  • 摘要: 本文基于南海东北部观测的抛物线型背景流,设计了8种形式的抛物线型背景流,利用IGW模式研究了其对内孤立波(ISW)的特征和能量学的影响。研究结果表明:背景流对波包中ISW数目没有影响,但减小了ISW的相速度;对于下边界在主温跃层附近或在其上的抛物线型背景流,ISW振幅和最大位移深度均增加;随着抛物背景流曲率减小,ISW振幅、斜压与正压能比值减小,同时ISW相速度、正压能、斜压能、KE/APE都增加;如果抛物背景流底部延伸至海底,且曲率减小,则ISW振幅、相速度减小,同时正压能、斜压能、KE/APE增加;在整个深度上的背景流,随着下层曲率减小和上层曲率增大,ISW振幅、相速度、斜压与正压能比值、斜压能、KE/APE均增加。
  • Apel J R, Ostrovsky L A, Stepanyants Y A, et al. 2006. Internal solitons in the ocean. Technical Report 2006, WHOI-2006-04
    Cai Shuqun, Long Xiaomin, Dong Danpeng, et al. 2008. Background current affects the internal wave structure of the northern South China Sea. Progress in Natural Science, 18(5): 585-589
    Chen Zhiwu, Xie Jieshuo, Xu Jiexin, et al. 2013. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Modelling, 68: 1-8
    Choi W, Camassa R. 1999. Fully nonlinear internal waves in a two-fluid system. J Fluid Mech, 396: 1-36
    Dushaw B D, Cornuelle B D, Worcester P F, et al. 1995. Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys
    Oceanogr, 25(4): 631-647
    Holloway P E, Merrifield M A. 1999. Internal tide generation by seamounts, ridges, and islands. J Geophys Res, 104(C11):25937-25951
    Kang D, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the monterey bay area. J Phys Oceanogr, 42(2): 272-290
    Lamb K G. 2008. On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J Fluid Mech, 597: 415-427
    Lamb K G. 2010. Energetics of internal solitary waves in a background sheared current. Nonlin Processes Geophys, 17(5): 553-568
    Liao Guanghong, Yang Chenghao, Xu Xiaohua, et al. 2012. Effects of mesoscale eddies on the internal solitary wave propagation. Acta Oceanologica Sinica, 31(5): 26-40
    Lin Zhenhua, Song Jinbao. 2012. Numerical studies of internal solitary wave generation and evolution by gravity collapse. Journal of Hydrodynamics, Ser B, 24(4): 541-553
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451-460
    Scotti A, Beardsley R, Butman B. 2006. On the interpretation of energy
    and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay. J Fluid Mech, 561: 103-112
    Turkington B, Eydeland A, Wang S. 1991. A computational method for solitary internal waves in a continuously stratified fluid. Stud Appl Math, 85: 93-127
    Vlasenko V, Stashchuk N, Hutter K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge, UK: Cambridge University Press, 351
    Vlasenko V, Alpers W. 2005. Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res, 110: C02019
    Warn-Varnas A, Hawkins J, Lamb K G, et al. 2010. Solitary wave generation dynamics at Luzon strait. Ocean Modelling, 31(1-2): 9-27
    Wunsch C. 1975. Internal tides in the ocean. Rev Geophys, 13(1): 167-182
    Xie Jieshuo, Chen Zhiwu, Xu Jiexin, et al. 2014. Effect of vertical stratification on characteristics and energy of nonlinear internal solitary waves from a numerical model. Commun Nonlinear Sci Numer Simulat, 19(10): 3539-3555
  • 加载中
计量
  • 文章访问数:  1377
  • HTML全文浏览量:  47
  • PDF下载量:  1365
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2015-07-29

目录

    /

    返回文章
    返回