Parameter selection and model research on remote sensing evaluation for nearshore water quality

LEI Guibin ZHANG Ying PAN Delu WANG Difeng FU Dongyang

雷桂斌, 张莹, 潘德炉, 王迪峰, 付东洋. 近岸水质遥感评价参数的选择及评价模型的研究[J]. 海洋学报英文版, 2016, 35(1): 114-117. doi: 10.1007/s13131-016-0802-4
引用本文: 雷桂斌, 张莹, 潘德炉, 王迪峰, 付东洋. 近岸水质遥感评价参数的选择及评价模型的研究[J]. 海洋学报英文版, 2016, 35(1): 114-117. doi: 10.1007/s13131-016-0802-4
LEI Guibin, ZHANG Ying, PAN Delu, WANG Difeng, FU Dongyang. Parameter selection and model research on remote sensing evaluation for nearshore water quality[J]. Acta Oceanologica Sinica, 2016, 35(1): 114-117. doi: 10.1007/s13131-016-0802-4
Citation: LEI Guibin, ZHANG Ying, PAN Delu, WANG Difeng, FU Dongyang. Parameter selection and model research on remote sensing evaluation for nearshore water quality[J]. Acta Oceanologica Sinica, 2016, 35(1): 114-117. doi: 10.1007/s13131-016-0802-4

近岸水质遥感评价参数的选择及评价模型的研究

doi: 10.1007/s13131-016-0802-4

Parameter selection and model research on remote sensing evaluation for nearshore water quality

  • 摘要: 利用遥感技术的水质评价是海洋环境监测的必然趋势,但目前可通过遥感技术反演的水质参数种类远少于《海水水质标准》中的35项,因此遥感监测时必须反演的水质参数有哪些?利用有限的参数该建立怎样的水质评价模型?成为我们关心的问题。本文以雷州半岛海域为研究对象,通过对实测数据的分析得出13种水质参数中的主导参数为总氮(N)、总磷(P)、化学需氧量(COD)、酸度(pH)、溶解氧(DO)这5种;再通过数理统计理论得出这5种参数对水质分类判别能力的大小关系为:COD> DO> P> N> pH,分别建立对应的五参数、四参数、三参数水质评价模型,并确定最优评价模型。即,雷州半岛海域水质遥感评价时必须反演的参数为COD、DO、P和N,水质综合评价模型为四参数模型,为后续其他海域水质的遥感监测提供可借鉴的方法。
  • Alparslan E, Aydöner C, Tufekci V, et al. 2007. Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1-3): 391-398
    Gong Shaoqi, Huang Jiazhu, Li Yunmei, et al. 2008. Preliminary exploring of hyperspectral remote sensing experiment for nitrogen and phosphorus in water. Spectroscopy and Spectral Analysis (in Chinese), 28(4): 839-842
    Johnson R A, Wichern D W. 2002. Applied multivariate statistical analysis. New Jersey: Prentice Hall, 35-42
    Jolliffe I. 2005. Principal component analysis. In: Everitt B S, Howell D C, eds. Encyclopedia of Statistics in Behavioral Science. Hoboken, N J: John Wiley & Sons, Ltd, 23-30
    Mabwoga S O, Chawla A, Thukral A K. 2010. Assessment of water quality parameters of the Harike wetland in India, a Ramsar site, using IRS LISS IV satellite data. Environmental Monitoring and Assessment, 170(1-4): 117-128
    McLachlan G J. 2004. Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley-Interscience Meng Fanqi, Li Guangjie, Li Ming, et al. 2010. Application of stepwise discriminant analysis to screening evaluation factors of debris flow. Rock and Soil Mechanics, 31(9): 2925-2929
    Ministry of Environmental Protection of the People's Republic of China. 1998. GB 3097-1997
    Sea Water Quality Standard. Beijing: China Environmental Science Press
    Pan Banglong, Yi Weining, Wang Xianhua, et al. 2011. Inversion of the lake total nitrogen concentration by multiple regression kriging model based on hyperspectral data of HJ-1A. Spectroscopy and Spectral Analysis (in Chinese), 31(7): 1884-1888
    Ritchie J C, Zimba P V, Everitt J H. 2003. Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing, 69(6): 695-704
    Serdobolskii V I. 2008. Multiparametric Statistics. Oxford: Elsevier
    Shannon E E, Brezonik P L. 1972. Eutrophication analysis: a multivariate approach. Journal of the Sanitary Engineering Division, 98(1): 37-57
    Song Kaishan, Li Lin, Wang Zongming, et al. 2012. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environmental Monitoring and Assessment, 184(3): 1449-1470
  • 加载中
计量
  • 文章访问数:  1427
  • HTML全文浏览量:  52
  • PDF下载量:  1456
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-09-08

目录

    /

    返回文章
    返回