Integrated bioremediation techniques in a shrimp farming environment under controlled conditions

SONG Xianli YANG Qian REN J. Shengmin SUN Yao WANG Xiulin SUN Fuxin

宋娴丽, 杨茜, 任胜民, 孙耀, 王修林, 孙福新. 室内受控条件下对虾养殖环境综合生物修复技术研究[J]. 海洋学报英文版, 2016, 35(2): 88-94. doi: 10.1007/s13131-016-0812-2
引用本文: 宋娴丽, 杨茜, 任胜民, 孙耀, 王修林, 孙福新. 室内受控条件下对虾养殖环境综合生物修复技术研究[J]. 海洋学报英文版, 2016, 35(2): 88-94. doi: 10.1007/s13131-016-0812-2
SONG Xianli, YANG Qian, REN J. Shengmin, SUN Yao, WANG Xiulin, SUN Fuxin. Integrated bioremediation techniques in a shrimp farming environment under controlled conditions[J]. Acta Oceanologica Sinica, 2016, 35(2): 88-94. doi: 10.1007/s13131-016-0812-2
Citation: SONG Xianli, YANG Qian, REN J. Shengmin, SUN Yao, WANG Xiulin, SUN Fuxin. Integrated bioremediation techniques in a shrimp farming environment under controlled conditions[J]. Acta Oceanologica Sinica, 2016, 35(2): 88-94. doi: 10.1007/s13131-016-0812-2

室内受控条件下对虾养殖环境综合生物修复技术研究

doi: 10.1007/s13131-016-0812-2

Integrated bioremediation techniques in a shrimp farming environment under controlled conditions

  • 摘要: 本研究在室内受控条件下,在虾、贝、藻的多池内循环养殖的基础上,采用残饵污染控制技术减少残饵生成量,并针对对虾养殖中产生的主要目标污染物质及其存在形态,镶嵌以相应的生物修复技术,探讨了综合生物修复技术对对虾养殖生态系统自身污染的修复效果。研究结果表明:采用虾、贝、藻及生物滤池综合生物修复技术可有效降低养殖水体中的悬浮物、溶解无机碳和溶解有机碳的含量。残饵即时修复技术可显著减少残饵生成量,但梭鱼和沙蚕对沉积物的扰动作用对综合生物修复效果产生了一定的负面影响。综合生物修复技术中大型藻类对水体中溶解无机氮的修复能力略显不足,在实际修复过程中需充分考虑大型藻类固氮速率和系统内生物排氮速率的平衡关系,并确保能满足大型藻快速生长最佳的水层空间。单靠微生物滤池对水体中有机物的修复能力并不理想,需辅助增加泡沫分离等技术,提高系统对大分子胶体的去除能力。本研究为进一步构建现场对虾养殖环境的综合生物修复技术体系奠定了基础。
  • An Yang, Zeng Guoquan, Chen Xuechu, et al. 2012. Study on com-pound in-situ ecological purification technology for treating Penaeus vannamei mariculture water. Fishery Modernization (in Chinese), 39(3): 28-33
    Handå A, Forbord S, Wang Xinxin, et al. 2013. Seasonal-and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Nor-way. Aquaculture, 414-415: 191-201
    Herbeck L S, Unger D, Wu Ying, et al. 2013. Effluent, nutrient and or-ganic matter export from shrimp and fish ponds causing eu-trophication in coastal and back-reef waters of NE Hainan, tropical China. Continental Shelf Research, 57: 92-104
    Jones A B, Dennison W C, Preston N P. 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and mac-roalgal absorption: a laboratory scale study. Aquaculture, 193(1-2): 155-178
    Kim S K, Kong I, Lee B H, et al. 2000. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitri-fier. Aquaculture Engineering, 21(3): 139-150
    Kong Qian. 2010. Study on physical and chemical biology factor of polyculture systems of Litopenaeus vannameia and Mugil ceph-alus in intensive pond (in Chinese) [dissertation]. Zhanjiang: Guangdong Ocean University
    Neori A, Krom M D, Ellner S P, et al. 1996. Seaweed biofilters as regu-lators of water quality in integrated fish-seaweed culture units. Aquaculture, 141(3-4): 183-199
    Neori A, Shpigel M, Ben-Ezra D. 2000. A Sustainable integrated sys-tem for culture of fish, seaweed and abalone. Aquaculture, 186(3-4): 279-291
    Ray A J, Lewis B L, Browdy C L, et al. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superin-tensive culture systems. Aquaculture, 299(1-4): 89-98
    Ren J S, Stenton-Dozey J, Plew D R, et al. 2012. An ecosystem model for optimising production in integrated multitrophic aquacul-ture systems. Ecological Modelling, 246: 34-46
    Ramos R, Vinatea L,. Seiffert W, et al. 2009. Treatment of shrimp efflu-ent by sedimentation and oyster filtration using Crassostrea gigas and C. rhizophorae. Brazilian Archives of Biology and technology, 52(3): 775-783
    Shpigel M, Neori A, Popper D M, et al. 1993. A proposed model for “environmentally clean” land-based culture of fish, bivalves and seaweeds. Aquaculture, 117(1-2): 115-128
    Shnel N, Barak Y, Ezer T, et al. 2002. Design and performance of a zero-discharge tilapia recirculating system. Aquaculture Engin-eering, 26(3): 191-203
    Sandifer P A, Hopkins S J. 1996. Conceptual design of a sustainable pond-based shrimp culture system. Aquaculture Engineering, 15(1): 41-52
    Tang Qisheng, Fang Jianguang, Zhang Jihong, et al. 2013. Impacts of multiple stressors on coastal ocean ecosystems and Integrated Multi-trophic Aquaculture. Progress in Fishery Science (in Chinese), 34(1): 1-11
    Troell M, Joyce A, Chopin T, et al. 2009. Ecological engineering in aquaculture-Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297(1-4): 1-9
    Uddin M S, Farzana A, Fatema M K, et al. 2007. Technical evaluation of tilapia (Oreochromis niloticus) monoculture and tilapia-prawn (Macrobrachium rosenbergii) polyculture in earthen ponds with or without substrates for periphyton development. Aquaculture, 269(1-4): 232-240
    Xu Yongjian, Qian Lumin, Jiao Nianzhi. 2004. Nitrogen nutritional character of Gracilaria as bioindicators and restoral plants of eutrophication. Journal of Fishery Sciences of China (in Chinese), 11(3): 276-280
    Xu Zhiguang, Wu Haiyi, Zhan Dongmei, et al. 2014. Combined ef-fects of light intensity and NH4+-enrichment on growth, pig-mentation, and photosynthetic performance of Ulva prolifera (Chlorophyta). Chinese Journal of Oceanology and Limnology, 32(5): 1016-1023
    Yu Zonghe, Zhu Xiaoshan, Jiang Yuelu, et al. 2014. Bioremediation and fodder potentials of two Sargassum spp. in coastal waters of Shenzhen, South China. Marine Pollution Bulletin, 85(2): 797-802
  • 加载中
计量
  • 文章访问数:  1392
  • HTML全文浏览量:  107
  • PDF下载量:  1518
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-05
  • 修回日期:  2015-11-18

目录

    /

    返回文章
    返回