Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based on in situ measurement and MyOcean modeled data

XIA Shenzhen KE Changqing ZHOU Xiaobing ZHANG Jie

夏深圳, 柯长青, 周小兵, 张杰. 基于现场观测与MyOcean模式数据的印度洋东南部Aquarius反演海表盐度的评价与纠正[J]. 海洋学报英文版, 2016, 35(3): 54-62. doi: 10.1007/s13131-016-0818-9
引用本文: 夏深圳, 柯长青, 周小兵, 张杰. 基于现场观测与MyOcean模式数据的印度洋东南部Aquarius反演海表盐度的评价与纠正[J]. 海洋学报英文版, 2016, 35(3): 54-62. doi: 10.1007/s13131-016-0818-9
XIA Shenzhen, KE Changqing, ZHOU Xiaobing, ZHANG Jie. Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based on in situ measurement and MyOcean modeled data[J]. Acta Oceanologica Sinica, 2016, 35(3): 54-62. doi: 10.1007/s13131-016-0818-9
Citation: XIA Shenzhen, KE Changqing, ZHOU Xiaobing, ZHANG Jie. Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based on in situ measurement and MyOcean modeled data[J]. Acta Oceanologica Sinica, 2016, 35(3): 54-62. doi: 10.1007/s13131-016-0818-9

基于现场观测与MyOcean模式数据的印度洋东南部Aquarius反演海表盐度的评价与纠正

doi: 10.1007/s13131-016-0818-9

Assessment and adjustment of sea surface salinity products from Aquarius in the southeast Indian Ocean based on in situ measurement and MyOcean modeled data

  • 摘要: 本文分析了印度洋东南部西风带(30°-60°S,80°E-120°E)海区科学考察的实测盐度数据,并用来评价和比较与Aquarius反演海表盐度的差异。在印度洋中低纬海区,基于被动微波遥感的海表反演盐度受风速和海表温度的影响。将实测与Aquarius反演海表盐度之间的关系,以及风速和温度的修正用来校正Aquarius反演海表盐度,并用MyOcean模式数据来评价Aquarius反演海表盐度的校正效果。结果表明,与MyOcean模式海表盐度数据相比,校正前多数海区的Aquarius反演海表盐度相对偏高,但是55?S以南和98?E以西的低温区偏低。在印度洋东南部Aquarius反演海表盐度平均偏高0.42。校正大大消弱了高风速的影响,明显提高了Aquarius反演海表盐度的总体精度,与MyOcean模式海表盐度数据相比,平均误差为-0.05,平均绝对误差降低了0.06。42°S附近,校正的Aquarius反演海表盐度与MyOcean模式数据高度一致,二者差异大约只有0.004。
  • Bahurel P, Adragna F, Bell M J, et al. 2010. Ocean Monitoring and Forecasting Core Services:The European MyOcean Example. In:Hall J, Harrison D E, Stammer, D, Eds. Proceedings of OCEANOBS'09 Sustained Ocean Observations and Informa-tion for Society. Venice, Italy:ESA Publication WPP-306, 2-11
    Banks C J, Gommenginger C P, Srokosz M A, et al. 2012. Validating SMOS ocean surface salinity in the Atlantic with Argo and oper-ational ocean model data. IEEE Transactions on Geoscience and Remote Sensing, 50(5):1688-1702
    Boutin J, Martin N, Yin Xiaobin, et al. 2012. First assessment of SMOS data over open ocean:Part Ⅱ Sea surface salinity. IEEE Transac-tions on Geoscience and Remote Sensing, 50(5):1662-1675
    Camps A, Font J, Vall-llossera M, et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS Mission:Sea surface L-Band brightness temperature observations and their applica-tion to sea surface salinity retrieval. IEEE Transactions on Geoscience and Remote Sensing, 42(4):804-823
    Chen Jian, Zhang Ren, Wang Huizan, et al. 2014. An analysis on the error structure and mechanism of soil moisture and ocean sa-linity remotely sensed sea surface salinity products. Acta Oceanologica Sinica, 33(1):48-55
    Cheng Y, Andersen O B, Knudsen P. 2012. First evaluation of MyOcean altimetric data in the Arctic Ocean. Ocean Science Discussions, 9(1):291-314
    Ebuchi N, Abe H. 2012. Evaluation of sea surface salinity observed by Aquarius. In:2012IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Munich:IEEE, 5767-5769
    Feng Shizuo, Li Fengqi, Li Shaoqing. 1999. An Introduction to Mar-ine Science (in Chinese). Beijing:The Higher Education Press, 83-108
    Font J, Lagerloef G, Le Vine D, et al. 2003. The determination of sur-face salinity with SMOS-recent results and main issues. In:Pro-ceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'03). Toulouse, France:IEEE, 7-9
    Glejin J, Kumar V S, Nair T M B. 2013. Monsoon and cyclone induced wave climate over the near shore waters off Puduchery, south western Bay of Bengal. Ocean Engineering, 72:277-286
    Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satel-lite observations. Ocean Science, 8(5):845-857
    Kerr Y H, Waldteufel P, Wigneron J P, et al. 2001. Soil moisture re-trieval from space:The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Re-mote Sensing, 39(8):1729-1735
    Kerr Y H, Waldteufel P, Wigneron J P, et al. 2010. The SMOS Mission:New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5):666-68
    Lagerloef G. 2012. Satellite mission monitors ocean surface salinity. Eos, Transacations American Geophysical Union, 93(25):233-234
    Lagerloef G, Colomb F R, Le Vine D, et al. 2008. The Aquarius/SAC-D Mission:Designed to meet the salinity remote-sensing chal-lenge. Oceanography, 21(1):68-81
    Lerner R M, Hollinger J P. 1977. Analysis of 1.4 GHz radiometric measurements from Skylab. Remote Sensing of Environment, 6(4):251-269
    Le Vine D M, Lagerloef G S E, Colomb F R, et al. 2007. Aquarius:An instrument to monitor sea surface salinity from space. IEEE Transactions on Geoscience and Remote Sensing, 45(7):2040-2050
    Le Vine D M, Lagerloef G S E, Torrusio S E. 2010. Aquarius and re-mote sensing of sea surface salinity from space. Proceedings of the IEEE, 98(5):688-703
    Le Vine D M. 2011. Aquarius Instrument and Salinity Retrieval. http://aquarius.umaine.edu/cgi/documents.htm[03-Jun-2011]
    Liang Yuqing, Liu Jinfang, Zhang Xian, et al. 2003. Temporal and spa-tial characteristics of South Indian Ocean wind field. Marine Forecasts (in Chinese), 20(1):25-31
    Lu Zhaoshi, Shi Jiuxin, Jiao Yutian, et al. 2006. Experimental study of microwave remote sensing of sea surface salinity. Ocean Tech-nology (in Chinese), 25(3):70-75, 89
    Luis A J, Pandey P C. 2005. Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scattero-meter winds. Remote Sensing of Environment, 97(2):231-237
    Meissner T, Wentz F, Lagerloef G, et al. 2012. The Aquarius salinity retrieval algorithm. In:2012 12th Specialist Meeting on Mi-crowave Radiometry and Remote Sensing of the Environment. Rome:IEEE, 1-3
    Nardelli B B, Tronconi C, Pisano A, et al. 2013. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sensing of Environment, 129:1-16
    Ratheesh S, Sharma R, Sikhakolli R, et al. 2014. Assessing sea surface salinity derived by Aquarius in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 11(4):719-722
    Reagan J, Boyer T, Antonov J. 2013. Comparison analysis between Aquarius sea surface salinity and world ocean database in situ analyzed sea surface salinity.http://aquarius.umeoce.maine.edu/docs/aqsci2013_reagan.pdf[2013-11]
    Reagan J, Boyer T, Antonov J. 2014. Comparison analysis between Aquarius sea surface salinity and World Ocean Database in situ analyzed sea surface salinity. Journal of Geophysical Research:Oceans, 119(11):8122-8140
    Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13):1609-1625
    Sabia R, Camps A, Talone M, et al. 2010. Determination of the sea surface salinity error budget in the Soil Moisture and Ocean Sa-linity Mission. IEEE Transactions on Geoscience and Remote Sensing, 48(4):1684-1693
    mitt R W. 2008. Salinity and the global water cycle. Oceanography, 21(1):12-19
    Sharma R, Agarwal N, Momin I M, et al. 2010. Simulated sea surface salinity variability in the Tropical Indian Ocean. Journal of Cli-mate, 23(24):6542-6554
    Shi Jiuxin, Lu Zhaoshi, Li Shujiang, et al. 2006. Retrieval algorithm for seawater's salinity and temperature by L and S band mi-crowave remote sensing. Chinese High Technology Letters (in Chinese), 16(11):1181-1184
    Wang Xinxin, Yang Jianhong, Zhao Dongzhi, et al. 2013. SMOS satel-lite salinity data accuracy assessment in the China coastal areas. Haiyang Xuebao (in Chinese), 35(5):169-176
    Wentz F J, Le Vine D. 2008. Algorithm theoretical basis document Aquarius level-2 radiometer algorithm:Revision 1. RSS Tech-nical Report 012208, http://oceancolor.gsfc.nasa.gov/AQUARI-US/DOCS/Level2_salinity_atbd_rev1.pdf
    Xie Shangping, Annamalai H, Schott F A, et al. 2002. Structure and mechanisms of South Indian Ocean climate variability. Journal of Climate, 15(8):864-878
    Yin Xiaobin, Liu Yuguang, Zhang Hande, et al. 2005. Microwave re-mote sensing of sea surface salinity-A study on microwave ra-diation theory of calm sea surface. Chinese High Technology Letters (in Chinese), 15(8):86-90
    Yin Xiaobin, Liu Yuguang, Zhang Hande. 2006a. Removing the im-pact of wind direction on remote sensing of sea surface salinity. Chinese Science Bulletin, 51(11):1368-1373
    Yin Xiaobin, Liu Yuguang, Zhang Hande. 2006b. Removing the im-pact of wind direction on remote sensing of sea surface salinity. Chinese Science Bulletin (in Chinese), 51(3):349-354
    Yueh S H, West R, Wilson W J, et al. 2001. Error sources and feasibil-ity for microwave remote sensing of ocean surface salinity. IEEE Transactions on Geoscience and Remote Sensing, 39(5):1049-1060
    Zhao Kai, Shi Jiuxin, Zhang Hande. 2008. High sensitivity airborne L-band microwave radiometer measurements of sea surface sa-linity. Journal of Remote Sensing (in Chinese), 12(2):277-283
  • 加载中
计量
  • 文章访问数:  1374
  • HTML全文浏览量:  61
  • PDF下载量:  1359
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-24
  • 修回日期:  2015-05-05

目录

    /

    返回文章
    返回