Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea

HE Xiuping WANG Baodong XIE Linping XIN Ming WANG Wei WANG Zicheng ZHANG Wenquan WEI Qinsheng

何秀平, 王保栋, 谢琳萍, 辛明, 王炜, 王子成, 张文全, 韦钦胜. 柽柳对渤海滨海湿地土壤理化参数的影响[J]. 海洋学报英文版, 2016, 35(5): 106-112. doi: 10.1007/s13131-016-0851-8
引用本文: 何秀平, 王保栋, 谢琳萍, 辛明, 王炜, 王子成, 张文全, 韦钦胜. 柽柳对渤海滨海湿地土壤理化参数的影响[J]. 海洋学报英文版, 2016, 35(5): 106-112. doi: 10.1007/s13131-016-0851-8
HE Xiuping, WANG Baodong, XIE Linping, XIN Ming, WANG Wei, WANG Zicheng, ZHANG Wenquan, WEI Qinsheng. Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea[J]. Acta Oceanologica Sinica, 2016, 35(5): 106-112. doi: 10.1007/s13131-016-0851-8
Citation: HE Xiuping, WANG Baodong, XIE Linping, XIN Ming, WANG Wei, WANG Zicheng, ZHANG Wenquan, WEI Qinsheng. Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea[J]. Acta Oceanologica Sinica, 2016, 35(5): 106-112. doi: 10.1007/s13131-016-0851-8

柽柳对渤海滨海湿地土壤理化参数的影响

doi: 10.1007/s13131-016-0851-8
基金项目: The Public Science and Technology Research Funds Projects of Ocean under contract No. 201205008.

Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea

  • 摘要: 目前针对柽柳对土壤理化性质有很多不同甚至相反的结论,为了探知柽柳对滨海湿地土壤理化参数的影响,我们针对渤海滨海湿地柽柳冠下土壤理化参数如盐度,pH和水分进行了为期一年的监测。与对照区域相比,在柽柳生长季节当降水量较少时,由于柽柳对水分的消耗,在其主根附近形成土壤水分含量低值区;然而,在柽柳生长期或柽柳生长停滞期,当降水量丰富时,由于柽柳根际的保水作用,在柽柳主根附近形成水分含量高值区。柽柳根际的吸收作用会暂时降低土壤盐分含量但最终会通过雨水对枝叶盐分的淋洗以及落叶将盐分返回土壤。柽柳冠下土壤水分年平均值较对照区仅低6.4%,这表明在温带滨海湿地年平均降雨适中的地区,柽柳对土壤干旱和保水作用并没有很大的影响。然而,柽柳冠下土壤年平均盐分较对照区高18%,表明柽柳确实具有增加其冠下土壤盐分含量的作用。此外,土壤pH值在夏季会低至7.3而在冬季高至10.2。在柽柳生长季节,柽柳主根附近的pH比对照区低1个多pH单位但是在生长停滞期却差别不大,表明柽柳确实能够降低滨海湿地土壤pH。
  • Bateman H L, Paxton E H. 2009. Saltcedar and Russian olive interactions with wildlife. In: Shafroth P B, Brown C A, Merritt D M, eds. Saltcedar and Russian olive Control Demonstration Act Science Assessment: U.S. Geological Survey Scientific Investigations Report, 5247: 49-63
    Berry W L. 1970. Characteristics of salts secreted by Tamarix aphylla. American Journal of Botany, 57(10): 1226-1230
    Brock J H. 1994. Tamarix spp. (salt cedar), an invasive exotic woody plant in arid and semi-arid riparian habitats of western USA. In: de Waal L C, Child L E, Wade P M, et al., eds. Ecology and Management of Invasive Riverside Plants. Chichester: John Wiley & Sons Ltd, 27-44
    Busch D E, Smith S D. 1993. Effects of fire on water and salinity relations of riparian woody taxa. Oecologia, 94(2): 186-194
    Campbell C J, Dick-Peddie W A. 1964. Comparison of phreatophyte communities on the Rio Grande in New Mexico. Ecology, 45(3): 492-502
    Decker J P. 1961. Salt secretion by Tamarix pentandra pall. Forest Science, 7(3): 214-217
    Di Tomaso J M. 1998. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technology, 12(2): 326-336
    Everitt B L. 1980. Ecology of saltcedar—A plea for research. Environmental Geology, 3(2): 77-84
    Everitt B L. 1998. Chronology of the spread of tamarisk in the central Rio Grande. Wetlands, 18(4): 658-668
    Gay L W, Fritschen L J. 1979. An energy budget analysis of water use by saltcedar. Water Resources Research, 15(6): 1589-1592
    Glenn E, Tanner R, Mendez S, et al. 1998. Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River, Mexico. Journal of Arid Environments, 40(3): 281-294
    Grubb R T, Sheley R L, Carlstrom R D. 1997. Saltcedar (tamarisk). Bozeman: Montana State University Extension Service MT9710
    Guan Hongbin, Wand Xiaolan, Ju Di. 2009. Soiled modification and application of Tamarix chinensis on the saline soil. Resource Development & Market (in Chinese), 25(10): 918-921
    Hem J D. 1967. Composition of saline residues on leaves and stems of saltcedar (Tamarix pentandra Pallas): Analyses of saline depos-its leached or washed from saltcedar plants. Washington DC: U.S. Government Printing Office
    Hinsinger P, Plassard C, Tang C X, et al. 2003. Origins of root-medi-ated pH changes in the rhizosphere and their responses to en-vironmental constraints: a review. Plant and Soil, 248(1-2): 43-59
    Horton J L, Clark J L. 2001. Water table decline alters growth and sur-vival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecology and Management, 140(2-3): 239-247
    Ladenburger C G, Hild A L, Kazmer D J, et al. 2006. Soil salinity pat-terns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. Journal of Arid Environments, 65(1): 111-128
    Lesica P, DeLuca T H. 2004. Is tamarisk allelopathic?. Plant and Soil, 267(1-2): 357-365
    Liu Chunjiang. 2006. The application of Tamarisk resources in the coastal shelter forest construction of the Yellow River delta ar-gillaceous. Protection Forest Science and Technology (in Chinese), (2): 42-43, 61
    Merritt D M, Shafroth P B. 2012. Edaphic, salinity, and stand structur-al trends in chronosequences of native and non-native domin-ated riparian forests along the Colorado River, USA. Biological Invasions, 14(12): 2665-2685
    Nagler P L, Glenn E P, Jarnevich C S, et al. 2011. Distribution and abundance of saltcedar and Russian olive in the western United States. Critical Reviews in Plant Sciences, 30(6): 508-523
    Robinson T W. 1965. Introduction, Spread, and Aerial Extent of Salt-cedar (Tarmarix) in the Western States: U. S. Geological Survey Professional Papers, 491-A, 12
    Sexton J P. 2000. Invasive potential of Tamarix ramosissima (saltce-dar) in continental climates of North America [dissertation]. Missoula, MT, USA: University of Montana
    Shafroth P B, Friedman J M, Ischinger L S. 1995. Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in southwestern United States. Great Basin Naturalist, 55(1): 58-65
    Smith S D, Devitt D A, Sala A, et al. 1998. Water relations of riparian plants from warm desert regions. Wetlands, 18(4): 687-696
    Stromberg J C. 1998. Functional equivalency of saltcedar (Tamarix chinensis) and fremont cottonwood (Populus fremonth) along a free-flowing river. Wetlands, 18(4): 675-686
    Stromberg J C, Chew M K, Nagler P L, et al. 2009. Changing percep-tions of change: the role of scientists in Tamarix and river man-agement. Restoration Ecology, 17(2): 177-186
    Thomson W W, Berry W L, Liu L L. 1969. Localization and secretion of salt by the salt glands of Tamarix aphylla. Proceedings of the National Academy of Sciences of the United States of America, 63(2): 310-317
    Titus J H, Nowak R S, Smith S D. 2002. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 52(3): 269-292
    Vandersande M W, Glenn E P, Walworth J L. 2001. Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation. Journal of Arid Environments, 49(1): 147-159
    Waisel Y. 1991. The glands of Tamarix aphylla: a system for salt recretion or for carbon concentration. Physiologia Plantarum, 83(3):506-510
    Wang Yulong, Li Zhige, Zhang Feng, et al. 2004. Research on soil profile beneath Tamarisk forest. Inner Mongolia Forestry Investigation and Design (in Chinese), 27(S1): 71-72
    Wang Yuzhen, Liu Yongxin, Wei Chunlan, et al. 2006. Improvement of salt-affected soils with six halophytes. Journal of Anhui Agricultural Sciences (in Chinese), 34(5): 951-952, 957
    Wang Liyan, Pan Jie, Xiao Hui, et al. 2012. Effect of planting salt-tolerant plants on water-soluble salt in coastal saline soil. Chinese Agricultural Science Bulletin (in Chinese), 28(20): 250-254
    Wang Zhenyu, Zhao Fangfang, Zhang Baoguo, et al. 2010. Rhizosphere effect of three halophytes in the Yellow River Delta on nitrogen and phosphorus. Environmental Science & Technology(in Chinese), 33(10): 33-38
    Yi Liangpeng, Ma Jian, Li Yan. 2007. Soil salt and nutrient concentration in the rhizosphere of desert halophytes. Acta Ecologica Sinica, 27(9): 3565-3571
  • 加载中
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  42
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-24
  • 修回日期:  2016-01-06

目录

    /

    返回文章
    返回