Quantifying the contribution of natural variability to September Arctic sea ice decline

SONG Mirong WEI Lixin WANG Zhenzhan

SONGMirong, WEILixin, WANGZhenzhan. Quantifying the contribution of natural variability to September Arctic sea ice decline[J]. 海洋学报英文版, 2016, 35(5): 49-53. doi: 10.1007/s13131-016-0854-5
引用本文: SONGMirong, WEILixin, WANGZhenzhan. Quantifying the contribution of natural variability to September Arctic sea ice decline[J]. 海洋学报英文版, 2016, 35(5): 49-53. doi: 10.1007/s13131-016-0854-5
SONG Mirong, WEI Lixin, WANG Zhenzhan. Quantifying the contribution of natural variability to September Arctic sea ice decline[J]. Acta Oceanologica Sinica, 2016, 35(5): 49-53. doi: 10.1007/s13131-016-0854-5
Citation: SONG Mirong, WEI Lixin, WANG Zhenzhan. Quantifying the contribution of natural variability to September Arctic sea ice decline[J]. Acta Oceanologica Sinica, 2016, 35(5): 49-53. doi: 10.1007/s13131-016-0854-5

Quantifying the contribution of natural variability to September Arctic sea ice decline

doi: 10.1007/s13131-016-0854-5
基金项目: The National Natural Science Foundation of China under contract Nos 41305097 and 41176169.

Quantifying the contribution of natural variability to September Arctic sea ice decline

  • 摘要: 近几十年来,北极海冰呈现减少趋势,但自然变率对近期及未来北极海冰变化的贡献大小仍然存在争议。为此,本文仔细筛选了全球气候模式,并对有强迫与无强迫因子下模拟的北极海冰趋势与北极海冰观测记录扩展得到的北极海冰趋势进行了比较。结果显示,针对1979-2013年这35年卫星观测的9月份北极海冰覆盖范围的变化,自然变率的贡献不超过42.3%,这一结果与使用更长记录如从1953到2013年这61年的结果类似(61年的结果为自然变率的贡献小于48.5%),证实了人为强迫对近些年9月份北极海冰减少起到关键作用。同时模式模拟结果表明,进入21世纪,随着温室气体的增加,由自然变率导致的北极海冰变化仍存在正负趋势,且趋势量级略微增加,但正趋势与负趋势实现个数的比值仍维持平稳,这一结果表明未来外界强迫仍是北极海冰减少的重要决定因子。
  • Comiso J C, Nishio F. 2008. Trends in the sea ice cover using en-hanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research: Oceans (1978-2012), 113(C2): doi: 10.1029/2007JC004257
    Day J J, Hargreaves J C, Annan J D, et al. 2012. Sources of multi-decadal variability in Arctic sea ice extent. Environmental Re-search Letters, 7(3): 034011
    Ellis B, Brigham L. 2009. Arctic marine shipping assessment 2009 re-port. Ottawa: Arctic Council
    Enfield D B, Mestas-Nu.ez A M, Trimble P J. 2001. The Atlantic mul-tidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10): 2077-2080
    Fetterer F, Knowles K, Meier W, et al. 2009. Sea ice index [1979-2000]. Boulder, Colorado USA: National Snow and Ice Data Center, http://nsidc.org/data/G02135
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Let-ters, 39(6): doi: 10.1029/2012GL051000
    Kay J E, Holland M M, Jahn A. 2011. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophysical Research Letters, 38(15): doi: 10.1029/2011GL048008
    Kinnard C, Zdanowicz C M, Fisher D A, et al. 2011. Reconstructed changes in Arctic sea ice over the past 1450 years. Nature, 479(7374): 509-512
    Liu Jiping, Curry J A, Wang Huijun, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074-4079
    Liu Jiping, Song Mirong, Horton R M, et al. 2013. Reducing spread in climate model projections of a September ice-free Arctic. Pro-ceedings of the National Academy of Sciences of the United States of America, 110(31): 12571-12576
    Massonnet F, Fichefet T, Goosse H, et al. 2012. Constraining projec-tions of summer Arctic sea ice. The Cryosphere, 6(6): 1383-1394
    Meier W N, Stroeve J, Barrett A, et al. 2012. A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present. The Cryosphere, 6(6): 1359-1368
    Miles M W, Divine D V, Furevik T, et al. 2014. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophysical Research Letters, 41(2): 463-469
    Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next genera-tion of scenarios for climate change research and assessment. Nature, 463(7282): 747-756
    Notz D, Marotzke J. 2012. Observations reveal external driver for Arc-tic sea-ice retreat. Geophysical Research Letters, 39(8): doi: 10.1029/2012GL051094
    Post E, Bhatt U S, Bitz C M, et al. 2013. Ecological consequences of sea-ice decline. Science, 341(6145): 519-524
    Screen J A. 2013. Influence of Arctic sea ice on European summer precipitation. Environmental Research Letters, 8(4): 044015
    Smith L C, Stephenson S R. 2013. New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110(13): E1191-E1195
    Stroeve J C, Kattsov V, Barrett A, et al. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Re-search Letters, 39(16): doi: 10.1029/2012GL052676
    Swart N C, Fyfe J C, Hawkins E, et al. 2015. Influence of internal vari-ability on Arctic sea-ice trends. Nature Climate Change, 5(2): 86-89
    Tang Qiuhong, Zhang Xuejun, Francis J A. 2014. Extreme summer weather in northern mid-latitudes linked to a vanishing cryo-sphere. Nature Climate Change, 4(1): 45-50
    Taylor K E, Stouffer R J, Meehl G A. 2012. An Overview of Cmip5 and the Experiment Design. Bulletin of the American Meteorologic-al Society, 93(4): 485-498
    Thompson D W J, Wallace J M, Hegerl G C. 2000. Annular modes in the extratropical circulation. Part II: Trends. Journal of Climate, 13(5): 1018-1036
    Vinnikov K Y, Robock A, Stouffer R J, et al. 1999. Global warming and Northern Hemisphere sea ice extent. Science, 286(5446): 1934-1937
    Wang Muyin, Overland J E. 2012. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Re-search Letters, 39(18): doi: 10.1029/2012GL052868
  • 加载中
计量
  • 文章访问数:  886
  • HTML全文浏览量:  27
  • PDF下载量:  812
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-20
  • 修回日期:  2015-07-14

目录

    /

    返回文章
    返回