Latitudinal and interannual variations of the spring phytoplankton bloom peak in the East Asian marginal seas

CHEN Cheng MAO Zhihua HAN Guoqi ZHU Qiankun GONG Fang WANG Tianyu

陈诚, 毛志华, 韩国奇, 朱乾坤, 龚芳, 王天愚. 东亚边缘海区浮游植物春华的纬向与年际变化[J]. 海洋学报英文版, 2016, 35(12): 81-88. doi: 10.1007/s13131-016-0867-0
引用本文: 陈诚, 毛志华, 韩国奇, 朱乾坤, 龚芳, 王天愚. 东亚边缘海区浮游植物春华的纬向与年际变化[J]. 海洋学报英文版, 2016, 35(12): 81-88. doi: 10.1007/s13131-016-0867-0
CHEN Cheng, MAO Zhihua, HAN Guoqi, ZHU Qiankun, GONG Fang, WANG Tianyu. Latitudinal and interannual variations of the spring phytoplankton bloom peak in the East Asian marginal seas[J]. Acta Oceanologica Sinica, 2016, 35(12): 81-88. doi: 10.1007/s13131-016-0867-0
Citation: CHEN Cheng, MAO Zhihua, HAN Guoqi, ZHU Qiankun, GONG Fang, WANG Tianyu. Latitudinal and interannual variations of the spring phytoplankton bloom peak in the East Asian marginal seas[J]. Acta Oceanologica Sinica, 2016, 35(12): 81-88. doi: 10.1007/s13131-016-0867-0

东亚边缘海区浮游植物春华的纬向与年际变化

doi: 10.1007/s13131-016-0867-0

Latitudinal and interannual variations of the spring phytoplankton bloom peak in the East Asian marginal seas

  • 摘要: 针对一个比较完整的东亚大陆边缘海区,包括南海北部、日本列岛黑潮主干流区、日本海与鄂霍茨克海,其每年藻华峰期的纬向与年际变化研究非常鲜见。基于10年(2003-2012)遥感数据,论文报道每年叶绿素a浓度峰值时间约以21.20±2.86公里/天(十年中值±标准偏差)的速度从南海北部(12月-1月)向鄂霍茨克海(5月-6月)北向推进。除了南海北部的冬季藻华外,其余三个海区每年的支配性藻华事件均为春季藻华。藻华峰值时间的年际变化集中于十年中值时间的前后48天内,因此这个周期(十年中值±48天)被定义为每年的“春华”周期。从2003至2012年随着海洋表层温度上升春华峰值时间提前,但“春华”周期里平均叶绿素a浓度降低(由于不足的光照条件)的趋势在鄂霍茨克海最为显著。其余三个海区(南海北部、日本列岛黑潮主干流区与日本海)相应的年际变化趋势都不显著。论文研究结果进一步质疑了前人关于气候暖化可以促进高纬度海区藻华年生产力的判断。
  • Chiba S, Aita M N, Tadokoro K, et al. 2008. From climate regime shifts to lower-trophic level phenology:Synthesis of recent progress in retrospective studies of the western North Pacific. Progress in Oceanography, 77(2-3):112-126
    Doney S C. 2006. Plankton in a warmer world. Nature, 444(7120):695-696
    Edwards M, Richardson A J. 2004. Impact of climate change on mar-ine pelagic phenology and trophic mismatch. Nature, 430(7002):881-884
    Esaias W E. 1981. Remote sensing in biological oceanography. Oceanus, 24(3):32-38
    Field C B, Behrenfeld M J, Randerson J T, et al. 1998. Primary produc-tion of the biosphere:integrating terrestrial and oceanic com-ponents. Science, 281(5374):237-240
    Frouin R, Pinker R T. 1995. Estimating Photosynthetically Active Ra-diation (PAR) at the earth's surface from satellite observations. Remote Sensing of Environment, 51(1):98-107
    González Taboada F, Anadón R. 2014. Seasonality of North Atlantic phytoplankton from space:impact of environmental forcing on a changing phenology (1998-2012). Global Change Biology, 20(3):698-712
    Hama T, Shin K H, Handa N. 1997. Spatial variability in the primary productivity in the East China Sea and its adjacent waters. Journal of Oceanography, 53(1):41-51
    Kahru M, Brotas V, Manzano-Sarabia M, et al. 2011. Are phytoplank-ton blooms occurring earlier in the Arctic?. Global Change Bio-logy, 17(4):1733-1739
    Kim S T. 2012. A review of the Sea of Okhotsk ecosystem response to the climate with special emphasis on fish populations. ICES Journal of Marine Science, 69(7):1123-1133
    Koeller P, Fuentes-Yaco C, Platt T, et al. 2009. Basin-scale coherence in phenology of shrimps and phytoplankton in the North At-lantic Ocean. Science, 324(5928):791-793
    Longhurst A. 1995. Seasonal cycles of pelagic production and con-sumption. Progress in Oceanography, 36(2):77-167
    McClain R, Meister C. 2012. Mission Requirements for Future Ocean-Colour Sensors. IOCCG Report, 13:7-8
    Mustapha M A, Saitoh S. 2008. Observations of sea ice interannual variations and spring bloom occurrences at the Japanese scal-lop farming area in the Okhotsk Sea using satellite imageries. Estuarine, Coastal and Shelf Science, 77(4):577-588
    Platt T, Sathyendranath S, White G N, et al. 2010. Diagnostic proper-ties of phytoplankton time series from remote sensing. Estuar-ies and Coasts, 33(2):428-439
    Racault M F, Le Quéré C, Buitenhuis E, et al. 2012. Phytoplankton phenology in the global ocean. Ecological Indicators, 14(1):152-163
    Saitoh S, Iida T, Sasaoka K. 2002. A description of temporal and spa-tial variability in the Bering Sea spring phytoplankton blooms (1997-1999) using satellite multi-sensor remote sensing. Pro-gress in Oceanography, 55(1-2):131-146
    Schwartz M D. 1998. Green-wave phenology. Nature, 394(6696):839-840
    Sherman K, Hempel G. 2009. The UNEP Large Marine Ecosystem Re-port:A perspective on changing conditions in LMEs of the world's Regional Seas. UNEP Regional Seas Report and Studies No. 182. United Nations Environment Programme. Nairobi, Kenya:Elsevier Science BV
    Siegel D A, Doney S C, Yoder J A. 2002. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science, 296(5568):730-733
    Sugisaki H, Hidaka K, Ichikawa T, et al. 2011. Long-term variation of plankton community of Kuroshio warm current area, the spawning ground of Japanese sardine. http://www.pices.int/publications/Sugisaki.pdf[2011-10-23/2015-3-18]
    Tang D L, Ni I H, Kester D R, et al. 1999. Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea. Marine Ecology Progress Series, 191:43-51
    Yamada K, Ishizaka J, Nagata H. 2005. Spatial and temporal variabil-ity of satellite primary production in the Japan Sea from 1998 to 2002. Journal of Oceanography, 61(5):857-869
    Yoder J A, Kennelly M A. 2003. Seasonal and ENSO variability in glob-al ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global Biogeochemical Cycles, 17(4):1112
    Zhai L, Platt T, Tang C, et al. 2011. Phytoplankton phenology on the Scotian Shelf. ICES Journal of Marine Science, 68(4):781-791
  • 加载中
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  51
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2016-05-03

目录

    /

    返回文章
    返回