Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO2-acidified seawater

ZHANG Dajuan GUO Donghui WANG Guizhong LI Shaojing

张达娟, 郭东晖, 王桂忠, 李少菁. 中华哲水蚤抗氧化系统对海水酸化的响应[J]. 海洋学报英文版, 2016, 35(8): 82-88. doi: 10.1007/s13131-016-0870-5
引用本文: 张达娟, 郭东晖, 王桂忠, 李少菁. 中华哲水蚤抗氧化系统对海水酸化的响应[J]. 海洋学报英文版, 2016, 35(8): 82-88. doi: 10.1007/s13131-016-0870-5
ZHANG Dajuan, GUO Donghui, WANG Guizhong, LI Shaojing. Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO2-acidified seawater[J]. Acta Oceanologica Sinica, 2016, 35(8): 82-88. doi: 10.1007/s13131-016-0870-5
Citation: ZHANG Dajuan, GUO Donghui, WANG Guizhong, LI Shaojing. Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO2-acidified seawater[J]. Acta Oceanologica Sinica, 2016, 35(8): 82-88. doi: 10.1007/s13131-016-0870-5

中华哲水蚤抗氧化系统对海水酸化的响应

doi: 10.1007/s13131-016-0870-5

Response of antioxidant defense system in copepod Calanus sinicus Brodsky exposed to CO2-acidified seawater

  • 摘要: 海洋浮游动物可以对因二氧化碳浓度升高导致的海水酸化做出敏感的响应,然而关于海水酸化对其生理机能的研究却较少。因此,我们研究了暴露于不同二氧化碳浓度(0.08,0.20,0.50 and 1.00%)的酸化条件下中华哲水蚤主要抗氧化酶以及2种解毒酶的活性变化情况。结果表明,暴露于酸化海水中的中华哲水蚤的GPx酶活性显著高于对照组,然而,其它抗氧化组分,包括GST、SOD活性,GSH水平和GSH/GSSG比值均被显著抑制。中华哲水蚤的ATPase活性被海水酸化显著刺激,而AchE活性却显著被抑制。此外,主成分分析结果表明,各指标变化的75.93%可以用第一和第二主成分解释。因二氧化碳浓度升高导致的海水酸化可以通过影响桡足类体内一些酶类的活性来影响其新陈代谢及存活。在未来的研究工作中,需要对海水酸化和其它环境因素的协同作用对桡足类的影响作进一步研究。
  • Bradford M M. 1976. A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254
    Byrne M, Soars N, Selvakumaraswamy P, et al. 2010. Sea urchin fertil-ization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Marine Environmental Research, 69(4):234-239
    Caldeira K, Wickett M E. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research:Oceans, 110(C9):C09S04
    Caulfield J A, Adams E E, Auerbach D I, et al. 1997. Impacts of ocean CO2 disposal on marine life:Ⅱ. probabilistic plume exposure model used with a time-varying dose-response analysis. Envir-onmental Modeling & Assessment, 2(4):345-353
    Christen R, Schackmann R W, Shapiro B M. 1983. Metabolism of sea urchin sperm. interrelationships between intracellular pH, AT-Pase activity, and mitochondrial respiration. Journal of Biolo-gical Chemistry, 258(9):5392-5399
    Delille B, Harlay J, Zondervan I, et al. 2005. Response of primary pro-duction and calcification to changes of pCO2 during experi-mental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemistry Cycles, 19(2):GB2023
    Doney S C, Fabry V J, Feely R A, et al. 2009. Ocean acidification:the other CO2 problem. Annual Review of Marine Science, 1(1):169-192
    Ellman G L, Courtney K D, Andres V Jr, et al. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2):88-95, doi: 10.1016/0006-2952(61)90145-9
    Engel A, Zondervan I, Aerts K, et al. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography, 50(2):493-507
    Forget J, Beliaeff B, Bocquené G. 2003. Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquatic Toxicology, 62(3):195-204
    Frova C. 2006. Glutathione transferases in the genomics era:new in-sights and perspectives. Biomolecular Engineering, 23(4):149-169
    Galgani F, Bocquene G. 1990. In vitro inhibition of acetylcholin-esterase from four marine species by organophosphates and carbamates. Bulletin of Environmental Contamination and Toxicology, 45(2):243-249
    Habig W H, Pabst M J, Jakoby W B. 1974. Glutathione S-transferases:the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22):7130-7139
    Hayes J D, Flanagan J U, Jowsey I R. 2005. Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45:51-88
    Huesemann M H, Skillman A D, Crecelius E A. 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar-ine Pollution Bulletin, 44(2):142-148
    Kurihara H, Ishimatsu A. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and sub-sequent generations. Marine Pollution Bulletin, 56(6):1086-1090
    Kurihara H, Shimode S, Shirayama Y. 2004a. Effects of raised CO2 concentration on the egg production rate and early develop-ment of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin, 49(9-10):721-727
    Kurihara H, Shimode S, Shirayama Y. 2004b. Sub-lethal effects of el-evated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography, 60(4):743-750
    Lee Y M, Park T J, Jung S O, et al. 2006. Cloning and characterization of glutathione S-transferase gene in the intertidal copepod Tigriopus japonicus and its expression after exposure to endo-crine-disrupting chemicals. Marine Environmental Research, 62(S1):S219-S223
    Markovi. D M,.iki. R V,.tajn A, et al. 2002. Some blood parameters and antioxidant defense enzyme activities in the liver of carps (Cyprinus carpio L.) under acute hypoxic conditions. Kraguje-vac Journal of Science, 24:111-120
    Mayor D J, Matthews C, Cook K, et al. 2007. CO2-induced acidifica-tion affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series, 350:91-97
    Orr J C, Fabry V J, Aumont O, et al. 2005. Anthropogenic ocean acidi-fication over the twenty-first century and its impact on calcify-ing organisms. Nature, 437(7059):681-686
    Pan C H, Chien Y H, Wang Yijuan. 2010. The antioxidant capacity re-sponse to hypoxia stress during transportation of characins (Hべ?扨牥?即瑯畢浲灹灣????坡牬敬湩?????敂汯穵湬敥牮????攠瑦?慤氠???ぴ?ㄠ扳???佬?獭略扮????獷畩扴??楣湡摲畯捴敥摮?獩敤慳眮愠瑁敱牵?慣捵楬摴極晲楥挠慒瑥楳潥湡?楣浨瀬愠挴琱猨?猩攺愹?申爭挹核椱渼?汲愾牐瘮慲汴?摥敲瘠效氠潏瀮洠攲渰琰???故汣敯癳慹瑳整摥?洠敥瑦慦扥潣汴楳挠?牦愠瑯散獥?摮攠捡牣敩慤獩敦?獣捡潴灩敯?映潩牮?杴物潭睥瑳栠?慦渠摯?楥湡摮甠捷敡?摭敩癮敧氺潡瀠?浨敹湳瑩慯汬?摧敩汳慴礧???潩浥灷愮爠慍瑡楲癩敮??楅潣捯桬敯浧楹猠瑐牲祯?慲湥摳?倠桓祥獲楩潥汳漬朠礳?倳愺爲琰″???漷氼敢捲甾汐慵爠????湩瑮敧本爠慓瑵楮瘠敓?偮桧礬猠楙潡汮潧朠祂??ㄠ?ぴ????????????扨牥?呣慯湭湢敩牮???????畣牴湳攠瑯瑦???????畡牴湵敲瑥琠???????つ????呰桬敹?敯普映敃捡瑬獡?潵晳?桳祩灮潩硣極慳?慩湮搠?灨??潳湯?灴桨攭湥潲汮漠硙楥摬慬獯敷?慓捥瑡椠癩楮琠祳?業湭?瑲栮攠??瑵汲慮湡瑬椠捯?戠汐畬敡?捫牴慯扮???慳汥污?楣湨攬挠琲收猨?猩愺瀱椰搴甹猭?‰?漷洼灢慲爾慐瑵楬癬敭??椠潍挠桅攬洠楐獥瑮牥祦?慫湹搠?倠桓礬猠楄潡汴潴条礠?倬愠牥瑴?扡牬????漶氰攮挠畐污慲牴????湲瑥敳杯牬慵瑴楩癯敮?偯桦礠獴楨潥氠潥杮祺?????????????????扸物?呡潴摩杶桥愠浰???????潹晬浡慴湩湯???????ひど???呡爭慴湩獯据爠楡灮瑤漠浰楲捯?牥敲獴灩潥湳猠敯?漠晳?獬敵慢?略爠捤桩楮湩?汲慯牰癨慥敮?卬琭牳潴湩杭祵汬潡捴敥湤琠牡潤瑥畮猭?灳畩牮灥甠牴慲瑩異獨?瑳潰??佴?獳略戮????獲畮扡??摯牦椠療敩湯?獯敧慩?睡慬琠敃牨?慭捩楳摴楲晹椬挠愲琳椵漺渳?′?漭申爳渲愹氼?潲显??硢灥敲牴楳洠敄測琠慈汯??楲潤氠潗朠祒??????????㈠?????????戰爸?圠慉汮汴???????慬渠?呡?奩???摬浩畴湹搠獯?倠?????ば????佨捥敬慬渠?慥捩楧摨楴晳椠捩慮琠楴潨湥?桨慩獧?渭潃?攼晳?晢放挲琼?潳湵?琾栠敳牯浵慴汨?扲汮攠慯捣桥楡湮朮?楂湩?瑧桥敯?捣潩牥慮汣?即攠牄楩慳瑣潵灳潳物慯?捳愬氠椵攨渶搩爺甴洴?″?漴爴愸氰?剢敲放晓獡?????????ㄠ????べ?扒爠?圬愠湇杲??楥湲朠桎甬愠??圠慡湬朮??田椰稴栮漠湔杨???っづ????椠潳捩桮敫洠楦捯慲氠?牮攭獴灨潲湯獰敯?潥普?瑣栠敃?挼潳灵敢瀾漲搼?味極杢爾椮漠灓畣獩?橮慣灥漬渠椳挰电猨‵?漸爲椩?攳砶瀷攭爳椷洱攼湢瑲愾汓污祭?敡硩灯漠獆攠摇?琠潄?挠慌摩浭楡甠浂???物据桫椠癃攬猠?潯晳??湡癮楴牯潳渠浌攠湒琠慂氬??潴渠瑡慬洮椠渲愰琱椰漮渠?慨湥搠?呯潭硢?楮捥潤氠潥杦祦?????????ば???ㄠ??扤爠?坯慷渠杰??楯湮朠桡畮慴??坸慩湤条??甠楤穥桦潥湮杳??㈠ち?つ??佩硯楣摨慥瑭楩癣敡?搠慰浡慲条敭?整晥晲敳挠瑩獮?楮湥?瑴桲敯?捩潣灡敬瀠潦摩?周椠杰牡楣潵瀬甠獐?橡慲灡潣渭楴捵畳猠??潳牯楰?整硡灭敩牣極浳攠渨瑈慯汬汭祢?敲硧瀬漠猱攸搸?琩漮?湅楣捯歴敯汸???捬潯瑧潹砬椠挱漹氨漵朩示?????祝??????????扬爠?堠楁愬?套楡浬楳湨朠??婊栮甠′?椰愱渮稠桐敯湴?????????数慡獣畴牳攠浯敦渠瑃?洼敳瑵桢漾搲?漯晳?杢氾甠瑩慮?瑥档楴潩湯敮?灯敮爠潤硥楥摰愭獳敥?愠换瑩楯癴楡琮礠?楣湩?扮汣潥漬搠′愹渴搨‵琵椴猱猩町攳???漳甲爰渼慢汲 ̄潓晨??礠?本椠敌湩敵?剈敯獮敧慢物据栮??椰渱‰?栠楏湸敹獧敥???????????????扡牴?婳栠慯湦朠??慣橡畬愠湰???楥?即栠慰潲橯楤湵杣??圠慢湹朠??畲楥穥栠潣湯条??敡瑬?慣汯???は?ㄠ???浣灩慥捳琠獦?潤映??佴?猠畡戠????獯畭戠??摡牬楡癳敳湩?獳敩慲睡愠瑰敳牥?慤捯楮摡楮晡椮挠慍瑡楲潩湮?漠湐?獬畬牵癴楩癯慮氠??敬杬来?灩牮漬搠甶挰琨椷漩渺?爰愰琵攭?愰渰搹?桢慲琾捓桰楩湴杺?獄甠捒挠敏獢獥?潬晥?映潌甠牗?洠愱爹椸渹攮?捁潮瀠敡灳潳摡獹???捲琠慳?佰捥敲慯湸潩汤潥朠楤捩慳?卵楴湡楳捥愠???ど??????????扡牭?婡桬慩湡杮??慩橳畳慵湥???業?卧桥慮潡橴楥湳朮??坮慡湬杹??畣楡穬栠潂湩杯??敥瑭?慩汳????ㄠ㈱???椱漩挺核攭洱椸挼慢汲 ̄牓整獵灭潰湰猠敍猬?潄晵?瑯桮整?捓漬瀠敔灨潯摲??敹湫瑥爠潍瀠慃本攠獥?琠敡湬甮椠爲攰洱椱獡?琠潃??佳?獢甾戲?土??獢甾戠??摤牵楣癥?攠湳?慡挭楷摡楴晥楲攠摡?獩敤慩睦慩瑣敡牴??坮愠瑩敭牰?卣捴楳攠湳捥敡???呣敨捩桮渠潬污潲杶祡?????????ね??? Ⅱ:gene expression patterns in pluteus larvae. Comparative Bio-chemistry and Physiology Part A:Molecular & Integrative Physiology, 160(3):320-33
  • 加载中
计量
  • 文章访问数:  978
  • HTML全文浏览量:  51
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2015-09-11

目录

    /

    返回文章
    返回