Flow cytometric analysis of DNA content for four commercially important crabs in China

LIU Lei CUI Zhaoxia SONG Chengwen LIU Yuan HUI Min WANG Chunlin

刘磊, 崔朝霞, 宋呈文, 刘媛, 惠敏, 王春琳. 应用流式细胞术测定中国四种经济蟹类的基因组大小[J]. 海洋学报英文版, 2016, 35(6): 7-11. doi: 10.1007/s13131-016-0876-z
引用本文: 刘磊, 崔朝霞, 宋呈文, 刘媛, 惠敏, 王春琳. 应用流式细胞术测定中国四种经济蟹类的基因组大小[J]. 海洋学报英文版, 2016, 35(6): 7-11. doi: 10.1007/s13131-016-0876-z
LIU Lei, CUI Zhaoxia, SONG Chengwen, LIU Yuan, HUI Min, WANG Chunlin. Flow cytometric analysis of DNA content for four commercially important crabs in China[J]. Acta Oceanologica Sinica, 2016, 35(6): 7-11. doi: 10.1007/s13131-016-0876-z
Citation: LIU Lei, CUI Zhaoxia, SONG Chengwen, LIU Yuan, HUI Min, WANG Chunlin. Flow cytometric analysis of DNA content for four commercially important crabs in China[J]. Acta Oceanologica Sinica, 2016, 35(6): 7-11. doi: 10.1007/s13131-016-0876-z

应用流式细胞术测定中国四种经济蟹类的基因组大小

doi: 10.1007/s13131-016-0876-z

Flow cytometric analysis of DNA content for four commercially important crabs in China

  • 摘要: 本研究以鸡(Gallus domesticus)的基因组大小(2.5 pg/2C)为内标,采用流式细胞术首次测定了我国沿海常见四种经济蟹类,三疣梭子蟹(Portunus trituberculatus),日本蟳(Charybdis japonica),拟穴青蟹(Scylla paramamosain)和中华绒螯蟹(Eriocheir sinensis)的基因组大小。结果表明,三疣梭子蟹,日本蟳,拟穴青蟹和中华绒螯蟹的基因组大小分别为2.31±0.01 pg, 2.33±0.03 pg, 1.64±0.02 pg, and 2.29±0.03 pg。这四种蟹的基因组含量小于甲壳动物基因组含量平均值(4.99±0.48 pg),且其中的三疣梭子蟹,日本蟳和中华绒螯蟹基因组大小相近,推测可能与四种蟹的地理分布相关。本研究为这四种蟹的生物多样性、物种保护和系统发育研究及杂交育种和基因组测序计划的实施提供数据支持。此外,本文建立了应用血细胞进行蟹类基因组大小测定的操作方法,为其它甲壳动物的基因组测定提供参考。
  • Allen Jr S K. 1983. Flow cytometry: assaying experimental polyploid fish and shellfish. Aquaculture, 33(1-4): 317-328
    Bachère E, Chagot D, Grizel H. 1988. Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Developmental & Comparative Immun-ology, 12(3): 549-559
    Bachmann K, Rheinsmith E L. 1973. Nuclear DNA amounts in pacific Crustacea. Chromosoma, 43(3): 225-236
    Beaulieu J M, Leitch I J, Knight C A. 2007. Genome size evolution in relation to leaf strategy and metabolic rates revisited. Annals of Botany, 99(3): 495-505
    Bennett M D, Bhandol P, Leitch I J. 2000. Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. An-nals of Botany, 86(4): 859-909
    Birstein V J, Poletaev A I, Goncharov B F. 1993. DNA content in euras-ian sturgeon species determined by Flow Cytometry. Cyto-metry, 14(4): 377-383
    Bonnivard E, Catrice O, Ravaux J, et al. 2009. Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome, 52(6): 524-536
    Chen Songlin, Zhang Guojie, Shao Changwei, et al. 2014. Whole-gen-ome sequence of a flatfish provides insights into ZW sex chro-mosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 46(3): 253-260
    Crissman H A, Stevenson A P, Kissane R J, et al. 1979. Techniques for quantitative staining of cellular DNA for flow cytometry analys-is. In: Melamed M R, Mullaney P F, Mendelsohn M L, eds. Flow Cytometry and Sorting. New York: John Wiley & Sons, 243-261
    Dillon Jr R T. 1989. Karyotypic evolution in Pleurocerid snails: I. Gen-omic DNA estimated by flow cytometry. Malacologia, 31(1): 197-203
    Dole.el J, Barto. J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95(1): 99-110
    Dole.el J, Barto. J, Voglmayr H, et al. 2003. Nuclear DNA content and genome size of trout and human. Cytometry Part A. The Journ-al of the International Society for Analytical Cytology, 51(2): 127-128
    Fafan.el M, Bihari N, Smodlaka M, et al. 2008. Hemocytes/coelomo-cytes DNA content in five marine invertebrates: cell cycles and genome sizes. Biologia, 63(5): 730-736
    Fishery Bureau, Ministry of Agriculture, China. 2014. China Fisheries Yearbook 2014 (in Chinese). Beijing: China Agriculture Press
    Grau S M, Cooke I M. 1992. Peptidergic neurons of the crab, Card-isoma carnifex, in defined culture maintain characteristic mor-phologies under a variety of conditions. Cell Tissue Research, 270(2): 303-317
    Gregory T R. 2001a. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews, 76(1): 65-101
    Gregory T R. 2001b. The bigger the C-Value, the larger the cell: gen-ome size and red blood cell size in vertebrates. Blood Cells, Mo-lecules, and Diseases, 27(5): 830-843
    Gregory T R. 2002. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution, 56(1): 121-130
    Gregory T R. 2016. Animal genome size database. http://www.gen-omesize.com
    Griffith O L, Moodie G E E, Civetta A. 2003. Genome size and longev-ity in fish. Experimental Gerontology, 38(3): 333-337
    Hameed A S S, Yoganandhan K, Sathish S, et al. 2001. White spot syn-drome virus (WSSV) in two species of freshwater crabs (Paratel-phusa hydrodomous and P. pulvinata). Aquaculture, 201(3-4): 179-186
    Jeffery N W. 2012. The first genome size estimates for six species of krill (Malacostraca, Euphausiidae): large genomes at the north and south poles. Polar Biology, 35(6): 959-962
    Marie D, Brown S C. 1993. A cytometric exercise in plant DNA histo-grams, with 2C values for 70 species. Biology of the Cell, 78(1-2): 41-51
    Musich P R, Skinner D M. 1972. A cytological study of the DNA of the Bermuda land crab, Gecarcinus lateralis. Journal of Cell Bio-logy, 55: 184a
    Petrov D A. 2001. Evolution of genome size: new approaches to an old problem. Trends in Genetics, 17(1): 23-28
    Prosperi E, Giangarè M C, Bottiroli G. 1991. Nuclease-induced DNA structural changes assessed by flow cytometry with the intercal-ating dye propidium iodide. Cytometry, 12(4): 323-329
    Rasch E M, Wyngaard G A. 2006. Genome sizes of cyclopoid cope-pods (Crustacea): evidence of evolutionary constraint. Biolo-gical Journal of the Linnean Society, 87(4): 625-635
    Rayburn A L, Auger J A, McMurphy L M. 1992. Estimating percentage constitutive heterochromatin by flow cytometry. Experimental Cell Research, 198(1): 175-178
    Rees D J, Dufresne F, Glémet H, et al. 2007. Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Gen-ome, 50(2): 151-158
    Rheinsmith E L, Hinegardner R, Bachmann K. 1974. Nuclear DNA amounts in Crustacea. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 48(3): 343-348
    Shapiro H M. 1988. Practical Flow Cytometry. 2nd ed. New York: Alan R Liss Inc, 353
    Shapiro H M. 2003. Practical Flow Cytometry. 4th ed. New York: Wiley-Liss
    Smith E M, Gregory T R. 2009. Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia, 625(1): 1-25
    Tiersch T R, Chandler R W, Wachtel S S, et al. 1989. Reference stand-ards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry, 10(6): 706-710
    Vinogradov A E. 2004. Genome size and extinction risk in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 271(1549): 1701-1705
    Xia Xuhua. 1995. Body temperature, rate of biosynthesis, and evolu-tion of genome size. Molecular Biology and Evolution, 12(5): 834-842
    Yi S, Streelman J T. 2005. Genome size is negatively correlated with effective population size in ray-finned fish. Trends in Genetics, 21(12): 643-646
    Zhang Guofan, Fang Xiaodong, Guo Ximing, et al. 2012. The oyster genome reveals stress adaptation and complexity of shell form-ation. Nature, 490(7418): 49-54
    Zhu Zeyuan, Yang Jie, Shi Yonghui, et al. 2007. Determination of gen-ome size of Eriocheir sinensis with SYBR Green I real-time fluor-escence quantitative PCR. Jiangsu Agricultural Sciences (in Chinese), (5): 164-166
  • 加载中
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  53
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-02
  • 修回日期:  2015-12-16

目录

    /

    返回文章
    返回