The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products

DUAN Yongliang LIU Hongwei YU Weidong HOU Yijun

段永亮, 刘洪伟, 于卫东, 侯一筠. 南半球亚极地流涡的平均特征及其变化[J]. 海洋学报英文版, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2
引用本文: 段永亮, 刘洪伟, 于卫东, 侯一筠. 南半球亚极地流涡的平均特征及其变化[J]. 海洋学报英文版, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2
DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products[J]. Acta Oceanologica Sinica, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2
Citation: DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products[J]. Acta Oceanologica Sinica, 2016, 35(7): 8-13. doi: 10.1007/s13131-016-0901-2

南半球亚极地流涡的平均特征及其变化

doi: 10.1007/s13131-016-0901-2
基金项目: The Shandong Provincial Natural Science Foundation, China under contract No. ZR2014DP011; the National Natural Science Foundation of China under contract No. 41406012; the Basic Scientific Research Fund for National Public Institutes of China under contract No. 2015G05; the Chinese Polar Science Strategy Research Foundation under contract NO. 20150305; the Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences under contract No. KLOCAW1405.

The mean properties and variations of the Southern Hemisphere subpolar gyres estimated by Simple Ocean Data Assimilation (SODA) products

  • 摘要: 本文基于SODA数据集研究了南半球亚极地流涡的平均特征及其变化性。SODA结果评估三个亚极地流涡的强度分别为Weddell流涡(55.9±9.8)×106m3/s,Ross流涡(37.0±6.4)×106m3/s,Australian-Antarctic流涡(27.5±8.2)×106 m3/s。相邻的两个流涡间存在显著的内在联通性,从而在南半球亚极地海域形成了一个海洋超级流涡结构。其内部的水体交换在70E为(8.0±3.2)×106m3/s,在140E为(4.3±3.1)×106m3/s。三个亚极地流涡最显著的变化集中在季节时间尺度上,都表现为冬季强,夏季弱。流涡结构的季节变化表现为Weddell流涡与Australian-Antarctic流涡的东边界在冬季向东延伸的更远,从而使得超级流涡间的水体交换增加。另外,Weddell流涡与Ross流涡也表现出较强的半年周期变化。相关性分析确认了流涡强度变化与局地风场强迫间的紧密联系。
  • Aoki S, Fujii N, Ushio S, et al. 2008. Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Cur-rent southeast of the Kerguelen Plateau. Journal of Geophysic-al Research, 113(C8):2092-2112
    Aoki S, Sasai Y, Sasaki H, et al. 2010. The cyclonic circulation in the Australian-Antarctic basin simulated by an eddy-resolving gen-eral circulation model. Ocean Dynamics, 60(3):743-757
    Assmann K M, Timmermann R. 2005. Variability of dense water formation in the Ross Sea. Ocean Dynamics, 55(2):68-87
    Beckmann A, Hellmer H H, Timmermann R. 1999. A numerical mod-el of the Weddell Sea:large-scale circulation and water mass distribution. Journal of Geophysical Research, 104(C10): 23375-23391
    Bindoff N L, Rosenberg M A, Warner M J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 47(12-13):2299-2326
    Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warm-ing of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research:Oceans, 110(C9):doi: 10.1029/2004JC002817
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Re-view, 136(8):2999-3017
    Chu P C, Fan Chenwu. 2007. An inverse model for calculation of glob-al volume transport from wind and hydrographic data. Journal of Marine Systems, 65(1-4):376-399
    Cisewski B, Strass V H, Leach H. 2011. Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006. Deep Sea Research Part I:Oceanographic Re-search Papers, 58(2):186-199
    Commodari V, Pierini S. 1999. A wind and boundary driven circula-tion model of the Ross Sea. In:Spezie G, Manzella G M R, eds. Oceanography of the Ross Sea Antarctica. Milano:Springer, 135-144
    Couldrey M P, Jullion L, Garabato A C N, et al. 2013. Remotely in-duced warming of Antarctic Bottom Water in the eastern Wed-dell Gyre. Geophysical Research Letters, 40(11):2755-2760
    Dellnitz M, Froyland G, Horenkamp C, et al. 2009. Seasonal variabil-ity of the subpolar gyres in the Southern Ocean:a numerical in-vestigation based on transfer operators. Nonlinear Processes in Geophysics, 16(6):655-664
    Drucker R, Martin S, Kwok R. 2011. Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophysical Research Letters, 38(17):L17502, 752-767
    Duan Yongliang, Hou Yijun, Liu Hongwei, et al. 2013. The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre. Acta Oceanologica Sinica, 32(11):74-81
    Fahrbach E, Hoppema M, Rohardt G, et al. 2011. Warming of deep and abyssal water masses along the Greenwich Meridian on decadal time scales:the Weddell Gyre as a heat buffer. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 58(25-26):2509-2523
    Garabato A C N, Williams A P, Bacon S. 2014. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Progress in Oceanography, 120:41-78
    Gordon A L, Martinson D G, Taylor H W. 1981. The wind-driven cir-culation in the Weddell-Enderby Basin. Deep Sea Research Part A:Oceanographic Research Papers, 28(2):151-163
    Gouretski V. 1999. The large-scale thermohaline structure of the Ross Gyre. In:Spezie G, Manzella G M R. Oceanography of the Ross Sea Antarctica. Milano:Springer, 77-100
    Johns T C, Durman C F, Banks H T, et al. 2006. The new Hadley Centre climate model (HadGEM1):evaluation of coupled simu-lations. Journal of Climate, 19(7):1327-1353
    Jullion L, Jones S C, Garabato A C N, et al. 2010. Wind-controlled ex-port of Antarctic Bottom Water from the Weddell Sea. Geophys-ical Research Letters, 37(9):493-533
    Jullion L, Garabato A C N, Bacon S, et al. 2014. The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation. Journal of Geophysical Research, 119(6):3357-3377
    Klatt O, Fahrbach E, Hoppema M, et al. 2005. The transport of the Weddell Gyre across the Prime Meridian. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(3-4):513-528
    Liu Hongwei, Zhang Qilong, Duan Yongliang, et al. 2011. The three-dimensional structure and seasonal variation of the north Pa-cific meridional overturning circulation. Acta Oceanologica Sinica, 30(3):33-42
    Mathiot P, Goosse H, Fichefet T, et al. 2011. Modelling the seasonal variability of the Antarctic Slope Current. Ocean Science, 7(4):455-470
    Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceano-graphy, 40(5):880-899
    McCartney M S, Donohue K A. 2007. A deep cyclonic gyre in the Aus-tralian-Antarctic Basin. Progress in the Oceanography, 75(4):675-750
    Meijers A J S, Klocker A, Bindoff N L, et al. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Research Part Ⅱ:Topical Stud-ies in Oceanography, 57(9-10):723-737
    Meredith M P, Garabato A C N, Gordon A L, et al. 2008. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995-2005. Journal of Climate, 21(13):3327-3343
    Nú.ez-Riboni I, Fahrbach E. 2009. Seasonal variability of the Antarc-tic Coastal Current and its driving mechanisms in the Weddell Sea. Deep Sea Research Part I:Oceanographic Research Pa-pers, 56(11):1927-1941
    Orsi A H, Nowlin Jr W D, Whitworth Ⅲ T. 1993. On the circulation and stratification of the Weddell Gyre. Deep Sea Research Part I:Oceanographic Research Papers, 40(1):169-203
    Park Y H, Vivier F, Roquet F, et al. 2009. Direct observations of the ACC transport across the Kerguelen Plateau. Geophysical Re-search Letters, 36(18):L18603252-260
    Purkey S G, Johnson G C. 2010. Warming of global abyssal and deep southern Ocean waters between the 1990s and 2000s:contribu-tions to global heat and sea level rise budgets. Journal of Cli-mate, 23(23):6336-6351
    Reid J L. 1997. On the total geostrophic circulation of the Pacific Ocean:flow patterns, tracers, and transports. Progress in Oceanography, 39(4):263-352
    Rickard G J, Roberts M J, Williams M J M, et al. 2010. Mean circula-tion and hydrography in the Ross Sea sector, Southern Ocean:representation in numerical models. Antarctic Science, 22(5):533-558
    Rintoul S R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophysical Research Letters, 34(6):125-141
    Rodehacke C B, Hellmer H H, Beckmann A, et al. 2007. Formation and spreading of Antarctic deep and bottom waters inferred from a chlorofluorocarbon (CFC) simulation. Journal of Geo-physical Research:Oceans, 112(C9):244-245
    Roquet F, Park Y H, Guinet C, et al. 2009. Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals. Journal of Marine Systems, 78(3):377-393
    Russell J L, Stouffer R J, Dixon K W. 2006. Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. Journal of Climate, 19(18):4560-4575
    Schr.der M, Fahrbach E. 1999. On the structure and the transport of the eastern Weddell Gyre. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 46(1-2):501-527
    Sen Gupta A, Santoso A, TaschettoA S, et al. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. Journal of Climate, 22(11):3047-3078
    Shenoi S S C, Shankar D, Shetye S R. 2005. On the accuracy of the simple ocean data assimilation analysis for estimating heat budgets of the near-surface Arabian Sea and Bay of Bengal. Journal of Physical Oceanography, 35(3):395-400
    Sultan E, Mercier H, Pollard R T. 2007. An inverse model of the large scale circulation in the South Indian Ocean. Progress in Ocean-ography, 74(1):71-94
    Thorpe S E, Murphy E J, Watkins J L. 2007. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations:investigating the roles of ocean and sea ice transport. Deep Sea Research Part I:Oceanographic Research Papers, 54(5):792-810
    Wang Zhaomin, Meredith M P. 2008. Density-driven Southern Hemi-sphere subpolar gyres in coupled climate models. Geophysical Research Letters, 35(14):L14608, doi: 10.1029/2008GL034344
    Wang Zhaomin. 2013. On the response of Southern Hemisphere sub-polar gyres to climate change in coupled climate models. Journal of Geophysical Research, 118(3):1070-1086
  • 加载中
计量
  • 文章访问数:  1403
  • HTML全文浏览量:  77
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-08-14

目录

    /

    返回文章
    返回