The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean

ZHANG Ting SONG Jinbao LI Shuang YANG Liangui

张婷, 宋金宝, 李爽, 杨联贵. 风浪和海洋飞沫对海表面拖曳系数和风廓线的影响[J]. 海洋学报英文版, 2016, 35(11): 79-85. doi: 10.1007/s13131-016-0950-6
引用本文: 张婷, 宋金宝, 李爽, 杨联贵. 风浪和海洋飞沫对海表面拖曳系数和风廓线的影响[J]. 海洋学报英文版, 2016, 35(11): 79-85. doi: 10.1007/s13131-016-0950-6
ZHANG Ting, SONG Jinbao, LI Shuang, YANG Liangui. The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean[J]. Acta Oceanologica Sinica, 2016, 35(11): 79-85. doi: 10.1007/s13131-016-0950-6
Citation: ZHANG Ting, SONG Jinbao, LI Shuang, YANG Liangui. The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean[J]. Acta Oceanologica Sinica, 2016, 35(11): 79-85. doi: 10.1007/s13131-016-0950-6

风浪和海洋飞沫对海表面拖曳系数和风廓线的影响

doi: 10.1007/s13131-016-0950-6

The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean

  • 摘要: 基于埃克曼理论,本文将波致应力和飞沫应力引入到海-气边界层的界面应力中,来研究海表面风浪和海洋飞沫对海-气边界层动量交换的影响,并得到修改后的埃克曼模型的理论解。波致应力是由风浪谱和波增长函数估计,并得到在中低风速下,波致应力、飞沫应力与湍流应力相比,对海表面拖曳系数和风廓线的影响非常小。当风速高于25米/秒时,海洋飞沫通过飞沫应力对海-气界面应力的作用远高于波致应力,以至于波致应力可以忽略。海表面拖曳系数在高风速下,随着风速的增大而减小。通过采用风浪谱的不同波龄,得到海洋飞沫的产生会导致海-气边界层风速的增加。最后,理论解与现场的观察数据进行了对比。对比后的数据表明,在中高风速下,飞沫对海-气边界层的影响远大于表面风浪。
  • Andreas E L. 1992. Sea spray and the turbulent air-sea heat fluxes. J Geophys Res, 97:11429-11441
    Andreas E L. 1998. A new sea spray generation function for wind speeds up to 32 m/s. J Phys Oceanogr, 28:2175-2184
    Andreas E L. 2002. A review of sea spray generation function for the open ocean. In:Perrie W A, ed. Atmosphere-Ocean Interactions, Vol. 1. Southampton, UK:WIT Press, 1-46
    Andreas E L. 2004. Spray stress revisited. J Phys Oceanogr, 34:1429-1440
    Banner M L, Chen Wei, Walsh Edward J, et al. 1999. The southern ocean waves experiment. Part Ⅰ:overview and mean results. J Phys Oceanogr, 29:2130-2145
    Barenblatt G I. 1955. On the motion of suspended particles in a turbulent flow taking up a half-space or a plane open channel of finite depth. Prikl Mat Meh, 19:61-88
    Belcher S E, Hunt J C R. 1993. Turbulent shear flow over slowly moving waves. J Fluid Mech, 251:109-148
    Borisenkov E P. 1974. Some mechanisms of atmosphere-ocean interaction under stormy weather conditions. Problems Arctic and Antarctic, 1:43-44
    Bortkovskii R S. 1973. On the mechanism of interaction between the ocean and the atmosphere during a storm. Fluid Mech Sov Res, 2:87-94
    Elfouhaily T, Chapron B, Katsaros K, et al. 1997. A unified directional spectrum for long and short wind-driven waves. J Geophys Res, 102:15781-15796
    Fairall C W, Kepert J D, Hollannd G J. 1994. The effect of sea spray on surface energy transports over the ocean. Global Atmos Ocean Syst, 2:121-142
    Innocentini V, Gonçalves I A. 2010. The impact of spume droplets and wave stress parameterizations on simulated near-surface maritime wind and temperature. J Phys Oceanogr, 40:1373-1390
    Janssen P A E M. 1989. Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr, 19:745-754
    Janssen P A E M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr, 21:1631-1642
    Jarosz E, Mitchell D A, Wang D W, et al. 2007. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315:1707-1709
    Kudryavtsev V N, Makin V K. 2011. Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-Layer Meteorology, 140:383-410
    Ling S C, Kao T W. 1976. Parameterization of the moisture and heat transfer process over the ocean under whitecap sea states. J Phys Oceanogr, 6:306-315
    Liu Bin, Guan Changlong, Xie Lian. 2012. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. J Geophys Res, 117:C00J22
    Makin V K. 2008. On the possible impact of a following-swell on the atmospheric boundary layer. Boundary-Layer Meteorology, 129:469-478
    Makin V K, Kudryavtsev V N, Mastenbroek C. 1995. Drag of the sea surface. Boundary-Layer Meteorology, 73:159-182
    Munk W H. 1955. Wind stress on water:an hypothesis. Quarterly Journal of the Royal Meteorological Society, 81:320-322
    Polnikov V G. 2013. Extended verification of the model of dynamic near-surface layer of the atmosphere. Izvestiya, Atmospheric and Oceanic Physics, 49:450-460
    Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422:279-283
    Rastigejev Y, Suslov S A. 2014. E-ε model of spray-laden near-sea atmospheric layer in high wind conditions. J Phys Oceanogr, 44:742-763
    Semedo A, Saetra Ø, Rutgersson A, et al. 2009. Wave-induced wind in the marine boundary layer. Journal of the Atmospheric Sciences, 66:2256-2271
    Song Jinbao. 2009. The effects of random surface waves on the steady Ekman current solutions. Deep-Sea Res:Ⅰ, 56(5):659-671
    Song Jinbao, Fan Wei, Li Shuang, et al. 2015. Impact of surface waves on the steady near-surface wind profiles over the ocean. Boundary-Layer Meteorology, 155:111-127
    Stewart R W. 1974. The air-sea momentum exchange. Boundary-Layer Meteorology, 6:151-167
    Sullivan P P, McWilliams J C, Melville W K. 2004. The oceanic boundary layer driven by wave breaking with stochastic variability:Part1. Direct numerical simulations. Journal of Fluid Mechanics, 507:143-174
    Tang Jie, Li Weibao, Chen Shumin, et al. 2013. Impacts of sea spray on the boundary layer structure of Typhoon Imbudo. Acta Oceanologica Sinica, 32(11):21-26
    Toba Y. 1972. Local balance in the air-sea boundary processes:I. On the growth process of wind waves. Journal of the Oceanographical Society of Japan, 28:109-120
    Wu J. 1973. Spray in the atmospheric surface layer:laboratory study. J Geophys Res, 78:511-519
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  62
  • PDF下载量:  1197
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-15
  • 修回日期:  2016-02-05

目录

    /

    返回文章
    返回