Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity: a case study in the Jiaozhou Bay, China

TAO Jing MA Weiwei ZHU Maoxu LI Tie YANG Rujun

陶婧, 马伟伟, 朱茂旭, 李铁, 杨茹君. 用细化的铁形态分析及量化的铁氧化物活性表征海洋沉积物中铁的成岩作用:以胶州湾为例[J]. 海洋学报英文版, 2017, 36(7): 48-55. doi: 10.1007/s13131-016-1083-2
引用本文: 陶婧, 马伟伟, 朱茂旭, 李铁, 杨茹君. 用细化的铁形态分析及量化的铁氧化物活性表征海洋沉积物中铁的成岩作用:以胶州湾为例[J]. 海洋学报英文版, 2017, 36(7): 48-55. doi: 10.1007/s13131-016-1083-2
TAO Jing, MA Weiwei, ZHU Maoxu, LI Tie, YANG Rujun. Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity: a case study in the Jiaozhou Bay, China[J]. Acta Oceanologica Sinica, 2017, 36(7): 48-55. doi: 10.1007/s13131-016-1083-2
Citation: TAO Jing, MA Weiwei, ZHU Maoxu, LI Tie, YANG Rujun. Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity: a case study in the Jiaozhou Bay, China[J]. Acta Oceanologica Sinica, 2017, 36(7): 48-55. doi: 10.1007/s13131-016-1083-2

用细化的铁形态分析及量化的铁氧化物活性表征海洋沉积物中铁的成岩作用:以胶州湾为例

doi: 10.1007/s13131-016-1083-2
基金项目: The National Natural Science Foundation of China under contract Nos 41576078 and 41276069; the Shandong Province Natural Science Foundation of China under contract No. ZR2015DM006; the National Key Research and Development Program of China under contract No. 2016YFA0601301.

Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity: a case study in the Jiaozhou Bay, China

  • 摘要: 以富营养化的胶州湾一个柱状沉积物为例,用细化的铁形态分析及量化的铁氧化物还原活性相结合的方法研究了沉积物中铁的成岩作用过程。结果表明,这两种方法相结合的结果能更详细示踪铁的转化并能从多视角提供铁成岩作用的细微差别。这一方法有望应用于其它研究中更好地揭示复杂的铁和硫的生物地球化学循环。铁微生物还原在上部沉积物铁的还原中起重要作用,但12 cm深度以下铁被硫化物的化学还原为主要过程。最具生物活性的无定形铁氧化物是铁微生物还原的主要参与者,然后依次为弱晶态铁氧化物和磁铁矿,晶态铁氧化物几乎不参与铁的成岩循环。沉积物上部铁微生物还原的重要作用主要是活性铁含量高而活性有机质含量低共同作用的结果,且后者也是沉积物中硫酸盐还原速率以及硫化物积累的最终制约因素。对比研究表明,通过还原性溶解动力学方法表征的微生物可还原的铁氧化物主要由无定形和弱晶态铁氧化物组成,其总体活性常数相当于老化的水铁矿,且随深度增加而减低。
  • Álvarez-Iglesias P, Rubio B. 2012. Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuarine, Coastal and Shelf Science, 100: 113-123
    Amann R, Glöckner F O, Neef A. 1997. Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiology Reviews, 20(3-4): 191-200
    Beckler J S, Kiriazi N, Rabouille C, et al. 2016. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Marine Chemistry, 178: 22-34
    Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282(4): 451-473
    Burton E D, Sullivan L A, Bush R T, et al. 2008. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Applied Geochemistry, 23(9): 2759-2766
    Canfield D E, Berner R A. 1987. Dissolution and pyritization of magnetite in anoxie marine sediments. Geochimica et Cosmochimica Acta, 51(3): 645-659
    Canfield D E, Kristensen E, Thamdrup B. 2005. Aquatic Geomicrobiology. Amsterdam: Elsevier
    Chen Liangjin, Zhu Maoxu, Yang Guipeng, et al. 2013. Reductive reactivity of iron(Ⅲ) oxides in the East China Sea sediments: characterization by selective extraction and kinetic dissolution. PLoS One, 8(11): e80367
    Chen Keke, Zhu Maoxu, Yang Guipeng, et al. 2014. Spatial distribution of organic and pyritic sulfur in surface sediments of eutrophic Jiaozhou Bay, China: clues to anthropogenic impacts. Marine Pollution Bulletin, 88(1-2): 284-291
    Cline J D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3): 454-458
    Devereux R, Lehrter J C. 2015. Manganese, iron, and sulfur cycling in Louisiana continental shelf sediments. Continental Shelf Research, 99: 46-56
    Ge Can, Zhang Weiguo, Dong Chenyin, et al. 2015. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China. Journal of Geophysical Research: Solid Earth, 120(7): 4720-4733
    Goldhaber M B. 2003. Sulfur-rich sediment. In: Mackenzie F T, ed. Sediments, Diagenesis, and Sedimentary Rocks, Treatise on Geochemistry. Amsterdam: Elsevier, 257–288
    Hoehler T M, Alperin M J, Albert D B, et al. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62(10): 1745-1756
    Hyacinthe C, Bonneville S, van Cappellen P. 2006. Reactive iron(Ⅲ) in sediments: chemical versus microbial extractions. Geochimica et Cosmochimica Acta, 70(16): 4166-4180
    Hyacinthe C, van Cappellen P. 2004. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry, 91(1-4): 227-251
    Hyun J H, Kim S H, Mok J S, et al. 2013. Impacts of long-line aquaculture of Pacific oysters (Crassostrea gigas) on sulfate reduction and diffusive nutrient flux in the coastal sediments of Jinhae-Tongyeong, Korea. Marine Pollution Bulletin, 74(1): 187-198
    Jacobson M E. 1994. Chemical and biological mobilization of Fe(Ⅲ) in marsh sediments. Biogeochemistry, 25(1): 40-60
    Jensen M M, Thamdrup B, Rysgaard S, et al. 2003. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry, 65(3): 295-317
    Kallmeyer J, Ferdelman T G, Weber A, et al. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2(6): 171-180
    Konhauser K. 2006. Introduction to Geomicrobiology. Malden: Blackwell Publishing
    Koretsky C M, Moore C M, Lowe K L, et al. 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry, 64(2): 179-203
    Koretsky C M, van Cappellen P, DiChristina T J, et al. 2005. Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science, 62(1-2): 233-251
    Kostka J E, Luther Ⅲ G W. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta, 58(7): 1701-1710
    Kraal P, Burton E D, Bush R T. 2013. Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments. Geochimica et Cosmochimica Acta, 122: 75-88
    Kristensen E, Mangion P, Tang M, et al. 2011. Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry, 103(1): 143-158
    Larsen O, Postma D. 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta, 65(9): 1367-1379
    Lehtoranta J, Ekholm P, Pitkänen H. 2009. Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio, 38(6): 303-308
    Liu Sumei, Zhang Jing, Chen Hongtao, et al. 2005. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography, 66(1): 66-85
    Liu Sumei, Zhu Bingde, Zhang Jing, et al. 2010. Environmental change in Jiaozhou Bay recorded by nutrient components in sediments. Marine Pollution Bulletin, 60(9): 1591-1599
    Lovley D R. 1991. Dissimilatory Fe(Ⅲ) and Mn(IV) reduction. Microbiological Review, 55(2): 259-287
    Lovley D R, Phillips E J P. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7): 1536-1540
    Luna G M, Manini E, Danovaro R. 2002. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Applied and Environmental Microbiology, 68(7): 3509-3513
    Luther Ⅲ G W. 1991. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55(10): 2839-2849
    März C, Poulton S W, Brumsack H J, et al. 2012. Climate-controlled variability of iron deposition in the central arctic ocean (southern Mendeleev Ridge) over the last 130 000 years. Chemical Geology, 330-331: 116-126
    Nickel M, Vandieken V, Brüchert V, et al. 2008. Microbial Mn(IV) and Fe(Ⅲ) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep-Sea Research: Part Ⅱ Topical Studies in Oceanography, 55(20-21): 2390-2398
    Postma D. 1993. The reactivity of iron oxides in sediments: a kinetic approach. Geochimica et Cosmochimica Acta, 57(21-22): 5027-5034
    Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3-4): 209-221
    Pu Xiaoqiang, Zhong Shaojun, Liu Fei, et al. 2009. Restriction factors to sulfide formation in estuarine sediments of Licun River of Jiaozhou Bay. Geochimica (in Chinese), 38(4): 323-333
    Raiswell R, Canfield D E, Berner R A. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111(1–4): 101-110
    Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochemical Prospectives, 1(1): 1-220
    Raiswell R, Vu H P, Brinza L, et al. 2010. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: methodology, dissolution kinetics and loss of solubility with age and de-watering. Chemical Geology, 278(1-2): 70-79
    Rickard D T. 1975. Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275(6): 636-652
    Rickard D. 2014. The sedimentary sulfur system: biogeochemistry and evolution through geologic time. In: Mackenzie F T, ed. Sediments, Diagenesis, and Sedimentary Rocks, Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 267–326
    Rickard D, Morse J W. 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97(3-4): 141-197
    Rowan C J, Roberts A P, Broadbent T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view. Earth and Planetary Science Letters, 277(1-2): 223-235
    Rysgaard S, Fossing H, Jensen M M. 2001. Organic matter degradation through oxygen respiration, denitrification, and manganese, iron, and sulfate reduction in marine sediments (the Kattegat and the Skagerrak). Ophelia, 55(2): 77
    Stookey L L. 1970. Ferrozine -A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7): 779-781
    Thamdrup B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, eds. Advances in Microbial Ecology. New York: Springer, 41–84
    Wang Yifeng, van Cappellen P. 1996. A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, 60(16): 2993-3014
    Wijsman J W M, Herman P M J, Middelburg J J, et al. 2002. A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuarine, Coastal and Shelf Science, 54(3): 403-421
    Wu Yulin, Sun Song, Zhang Yongshan. 2005. Long-term change of environment and it’s influence on phytoplankton community structure in Jiaozhou Bay. Oceanologia et Limnologia Sinica (in Chinese), 36(6): 487-498
    Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. 2014b. Kinetic characterization on reductive reactivity of iron(Ⅲ) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: implications for microbial iron reduction. Applied Geochemistry, 42: 16-26
    Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. 2014a. Humic sulfur in eutrophic bay sediments: characterization by sulfur stable isotopes and K-edge XANES spectroscopy. Estuarine, Coastal and Shelf Science, 138: 121-129
    Zhu Maoxu, Huang Xiangli, Yang Guipeng, et al. 2015. Iron geochemistry in surface sediments of a temperate semi-enclosed bay, North China. Estuarine, Coastal and Shelf Science, 165: 25-35
    Zhu Maoxu, Liu Juan, Yang Guipeng, et al. 2012. Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Marine Environmental Research, 80: 46-55
    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. 2013. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: constraints from solid-phase sulfur speciation and stable sulfur isotope. Continental Shelf Research, 54: 24-36
    Zimmerman A R, Canuel E A. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69(1-2): 117-137
  • 加载中
计量
  • 文章访问数:  903
  • HTML全文浏览量:  41
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-12-02

目录

    /

    返回文章
    返回