In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea

YI Xiaoyan HUANG Yousong ZHUANG Yunyun CHEN Hongju YANG Feifei WANG Weimin XU Donghui LIU Guangxing ZHANG Huan

衣晓燕, 黄有松, 庄昀筠, 陈洪举, 杨菲菲, 王为民, 徐东会, 刘光兴, 张寰. 南黄海和渤海近海海域中华哲水蚤的现场摄食研究[J]. 海洋学报英文版, 2017, 36(6): 68-79. doi: 10.1007/s13131-017-0974-6
引用本文: 衣晓燕, 黄有松, 庄昀筠, 陈洪举, 杨菲菲, 王为民, 徐东会, 刘光兴, 张寰. 南黄海和渤海近海海域中华哲水蚤的现场摄食研究[J]. 海洋学报英文版, 2017, 36(6): 68-79. doi: 10.1007/s13131-017-0974-6
YI Xiaoyan, HUANG Yousong, ZHUANG Yunyun, CHEN Hongju, YANG Feifei, WANG Weimin, XU Donghui, LIU Guangxing, ZHANG Huan. In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea[J]. Acta Oceanologica Sinica, 2017, 36(6): 68-79. doi: 10.1007/s13131-017-0974-6
Citation: YI Xiaoyan, HUANG Yousong, ZHUANG Yunyun, CHEN Hongju, YANG Feifei, WANG Weimin, XU Donghui, LIU Guangxing, ZHANG Huan. In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea[J]. Acta Oceanologica Sinica, 2017, 36(6): 68-79. doi: 10.1007/s13131-017-0974-6

南黄海和渤海近海海域中华哲水蚤的现场摄食研究

doi: 10.1007/s13131-017-0974-6
基金项目: The National Natural Science Foundation of China under contract Nos 31372509, 41076085 and 41328009.

In situ diet of the copepod Calanus sinicus in coastal waters of the South Yellow Sea and the Bohai Sea

  • 摘要: 桡足类是海洋生态系统中初级生产者和较高营养级消费者之间的关键联系环节,掌握桡足类的现场食物组成对于准确评估海洋食物网中的营养关系和能量转移至关重要。本研究中,我们以中华哲水蚤这一在中国、日本以及韩国近海具有重要生态地位的大型哲水蚤属桡足类为研究对象,应用之前开发的基于PCR的克隆技术,通过分析中华哲水蚤所摄食生物的18S rDNA序列,研究了中华哲水蚤的现场食物组成。结果揭示了南黄海(Y19站位)和渤海(B49站位)中华哲水蚤食物组成的多样性。共检测出43个操作分类单元(OTUs),分别隶属于13个类群:硅藻(Bacillariophyta)、甲藻(Dinoflagellata)、硅鞭藻(Dictyochophyceae)、金藻(Chrysophyta)、Katablepharidophyta、浮生藻(Pelagophyceae)、无根虫(Apusozoa)、水螅水母(Hydrozoa)、栉水母(Ctenophora)、棘皮动物(Echinodermata)、被囊动物(Tunicata)、毛颚动物(Chaetognatha)以及海洋真菌。结果还表明,当发生藻类暴发时,中华哲水蚤可以摄食引发藻类暴发的藻种。当周围海域浮游植物的丰度相对较低时,中华哲水蚤可以选择摄食各种后生动物尤其是水螅水母和栉水母的卵、幼虫或者有机碎屑。我们的研究结果表明中华哲水蚤是一种杂食性桡足类,它对食物的选择依赖其生活海域中食物的可获得性。
  • Altschul S F, Madden T L, Schäffer A A, et al. 1997. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research, 25(17):3389-3402
    Ban S, Burns C, Castel J, et al. 1997. The paradox of diatom-copepod interactions. Marine Ecology Progress Series, 157:287-293
    Barofsky A, Simonelli P, Vidoudez C, et al. 2010. Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. Journal of Plankton Research, 32(3):263-272
    Boling W B, Sinclair G A, Wawrik B. 2012. Identification of calanoid copepod prey species via molecular detection of carbon fixation genes. Marine Biology, 159(5):1165-1171
    Bråte J, Logares R, Berney C, et al. 2010. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. The ISME Journal, 4(9):1144-1153
    Buffan-Dubau E, de Wit R, Castel J. 1996. Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorin and carotenoid pigments. Marine Ecology Progress Series, 137(1-3):71-82
    Calbet A. 2008. The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science, 65(3):325-331
    Calbet A, Vaqué D, Felipe J, et al. 2003. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Marine Ecology Progress Series, 259:303-309
    Chen Qingchao. 1964. A study of the breeding periods, variation in sex ratio and in size of Calanus sinicus Brodsky. Oceanologia et Limnologia Sinica (in Chinese), 6(3):272-288
    Chen M R, Kâ S, Hwang J S. 2010. Diet of the copepod Calanus sinicus Brodsky, 1962 (Copepoda, Calanoida, Calanidae) in northern coastal waters of Taiwan during the northeast monsoon period. Crustaceana, 83(7):851-864
    Du Mingmin, Liu Zhensheng, Wang Chunsheng, et al. 2013. The seasonal variation and community structure of zooplankton in China sea. Acta Ecologica Sinica (in Chinese), 33(17):5407-5418
    Guo Zhiling, Liu Sheng, Hu Simin, et al. 2012. Prevalent ciliate symbiosis on copepods:high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene. PLoS One, 7(9):e44847
    Hu Simin, Guo Zhiling, Li Tao, et al. 2014. Detecting in situ copepod diet diversity using molecular technique:development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol. PLoS One, 9(7):e103528
    Hu Simin, Guo Zhiling, Li Tao, et al. 2015. Molecular analysis of in situ diets of coral reef copepods:evidence of terrestrial plant detritus as a food source in Sanya Bay, China. Journal of Plankton Research, 37(2):363-371
    Huang Yousong, Xu Donghui, Chen Hongju, et al. 2014. PCR-based in situ dietary analysis of Calanus sinicus Brodsky in Yellow River estuary and adjacent waters. Periodical of Ocean University of China (in Chinese), 44(3):83-91
    Hulsemann K. 1994. Calanus sinicus Brodsky and C. jashmovi, nom. nov. (Copepoda:Calanoida) of the North-western Pacific Ocean:a comparison, with notes on the integumental pore pattern in Calanus s. str. Invertebrate Taxonomy, 8(6):1461-1482
    Huo Yuanzi, Wang Shiwei, Sun Song, et al. 2008. Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal of Plankton Research, 30(6):723-734
    Ianora A, Miralto A, Poulet S A, et al. 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429(6990):403-407
    Irigoien X, Meyer B, Harris R, et al. 2004. Derek Harbour Using HPLC pigment analysis to investigate phytoplankton taxonomy:the importance of knowing your species. Helgoland Marine Research, 58(2):77-82
    Jones R H, Flynn K J. 2005. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science, 307(5714):1457-1459
    King R A, Read D S, Traugott M, et al. 2008. Molecular analysis of predation:a review of best practice for DNA-based approaches. Molecular Ecology, 17(4):947-963
    Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947-2948
    Li Shaojing. 1964. Preliminary studies on the food and feeding habits of some marine planktonic copepods in Amoy waters. Journal of Xiamen University (Natural Science) (in Chinese), 11(3):93-109
    Lin Senjie, Zhang Huan, Hou Yubo, et al. 2009. High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial coxl and cob genes for dinoflagellate DNA barcoding. Applied and Environmental Microbiology, 75(5):1279-1290
    Liu Mengtan, Li Chaolun, Sun Song. 2011. Seasonal variation in fatty acid composition of seston and the copepod Calanus sinicus (Brodsky, 1962) in Jiaozhou Bay and its trophic implications. Chinese Journal of Oceanology and Limnology, 29(6):1164-1173
    López-García P, Rodríguez-Valera F, Pedrós-Alió C, et al. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409(6820):603-607
    Maloy A P, Culloty S C, Slater J W. 2013. Dietary analysis of small planktonic consumers:a case study with marine bivalve larvae. Journal of Plankton Research, 35(4):866-876
    Moon-van der Staay S Y, De Wachter R, Vaulot D. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409(6820):607-610
    Motwani N H, Gorokhova E. 2013. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS One, 8(11):e79230
    Nejstgaard J C, Frischer M E, Raule C L, et al. 2003. Molecular detection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography:Methods, 1(1):29-38
    Nejstgaard J C, Frischer M E, Simonelli P, et al. 2008. Quantitative PCR to estimate copepod feeding. Marine Biology, 153(4):565-577
    Pompanon F, Deagle B E, Symondson W O C, et al. 2012. Who is eating what:diet assessment using next generation sequencing. Molecular Ecology, 21(8):1931-1950
    Richards T A, Jones M D M, Leonard G, et al. 2012. Marine fungi:their ecology and molecular diversity. Annual Review of Marine Science, 4(1):495-522
    Riemann L, Alfredsson H, Hansen M M, et al. 2010. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biology Letters, 6(6):819-822
    Saiz E, Calbet A. 2011. Copepod feeding in the ocean:scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia, 666(1):181-196
    Sautour B, Artigas L F, Delmas D, et al. 2000. Grazing impact of micro-and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. Journal of Plankton Research, 22(3):531-552.
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23):7537-7541
    Schmidt K, Atkinson A, Stübing D, et al. 2003. Trophic relationships among Southern Ocean copepods and krill:Some uses and limitations of a stable isotope approach. Limnology and Oceanography, 48(1):277-289
    Schnetzer A, Steinberg D. 2002. Natural diets of vertically migrating zooplankton in the Sargasso Sea. Marine Biology, 141(1):89-99
    Sieburth J M, Johnson P W, Hargraves P E. 1988. Ultrastructure and ecology of Aureococcus anophageferens gen. et sp. nov. (Chrysophyceae):the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. Journal of Phycology, 24(3):416-425
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739
    Turner J T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43(2):255-266
    Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 130:205-248
    Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilingen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie, 9:1-38
    Uye S. 2000. Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest Pacific Ocean?. ICES Journal of Marine Science, 57(6):1850-1855
    Verschoor A M, Boonstra H, Meijer T. 2005. Application of stable isotope tracers to studies of zooplankton feeding, using the rotifer Brachionus calyciflorus as an example. In:Herzig A, Gulati R, Jersabek C, et al., eds. Rotifera X. Netherlands:Springer, 535-549
    Yang Jiming. 1997. Primary study on the feeding of the Bohai Sea Calanus sinicus. Oceanologia et Limnologia Sinica (in Chinese), 28(4):376-382
    Yi Xiaoyan, Zhang Huan, Liu Guangxing. 2014. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study. Chinese Journal of Oceanology and Limnology, 32(3):515-521
    Zhang Huan, Bhattacharya D, Lin Senjie. 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. Journal of Phycology, 41(2):411-420
    Zhang Guangtao, Li Chaolun, Sun Song, et al. 2006. Feeding habits of Calanus sinicus (Crustacea:Copepoda) during spring and autumn in the Bohai Sea studied with the herbivore index. Scientia Marina, 70(3):381-388
    Zhang Huan, Lin Senjie. 2002. Detection and quantification of Pfiesteria piscicida by using the mitochondrial cytochrome b gene. Applied and Environmental Microbiology, 68(2):989-994
    Zhang Huan, Lin Senjie. 2005. Development of a cob-18S rRNA gene real-time PCR assay for quantifying Pfiesteria shumwayae in the natural environment. Applied and Environmental Microbiology, 71(11):7053-7063
    Zhang Qingchun, Qiu Limei, Yu Rencheng, et al. 2012. Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae, 19:117-124
    Zöllner E, Hoppe H G, Sommer U, et al. 2009. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography, 54(1):262-275.
  • 加载中
计量
  • 文章访问数:  663
  • HTML全文浏览量:  47
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-08-02

目录

    /

    返回文章
    返回