Aerial observations of sea ice and melt ponds near the North Pole during CHINARE2010

LI Lanyu KE Changqing XIE Hongjie LEI Ruibo TAO Anqi

李澜宇, 柯长青, 谢红接, 雷瑞波, 陶安琪. 中国第四次北极科学考察期间北极点附近海冰和融池的航空遥感观测[J]. 海洋学报英文版, 2017, 36(1): 64-72. doi: 10.1007/s13131-017-0994-2
引用本文: 李澜宇, 柯长青, 谢红接, 雷瑞波, 陶安琪. 中国第四次北极科学考察期间北极点附近海冰和融池的航空遥感观测[J]. 海洋学报英文版, 2017, 36(1): 64-72. doi: 10.1007/s13131-017-0994-2
LI Lanyu, KE Changqing, XIE Hongjie, LEI Ruibo, TAO Anqi. Aerial observations of sea ice and melt ponds near the North Pole during CHINARE2010[J]. Acta Oceanologica Sinica, 2017, 36(1): 64-72. doi: 10.1007/s13131-017-0994-2
Citation: LI Lanyu, KE Changqing, XIE Hongjie, LEI Ruibo, TAO Anqi. Aerial observations of sea ice and melt ponds near the North Pole during CHINARE2010[J]. Acta Oceanologica Sinica, 2017, 36(1): 64-72. doi: 10.1007/s13131-017-0994-2

中国第四次北极科学考察期间北极点附近海冰和融池的航空遥感观测

doi: 10.1007/s13131-017-0994-2
基金项目: The National Natural Science Foundation of China under contract No. 41371391; the Program for Foreign Cooperation of Chinese Arctic and Antarctic Administration, State Oceanic Administration of China under contract No. IC201301; the National Key Research and Development Program of China under contract No. 2016YFA0600102.

Aerial observations of sea ice and melt ponds near the North Pole during CHINARE2010

  • 摘要: 北极点附近许多极轨卫星无法覆盖,航空遥感可以提供极点区域海冰观测的验证数据。这些数据也可以用来作为极点附近遥感数据缺失的一个补充,以进一步缩小空间内插的不确定性。本文分析了2010年第四次北极科学考察期间北极点附近的航空遥感影像,结果表明从北纬87度的长期冰站到极点之间,开阔水域的比例增加,导致了海冰的减少。8月16日和19融入两个航次的平均海冰密集度只有62%。从开阔水域、融池和和积雪覆盖海冰的面积比例估算的平均反照率只有0.42,略微低于2005年HOTRAX航次的0.49。8月19日的数据表明从长期冰站到极点的反照率是下降的,主要是由于积雪覆盖海冰面积的降低和融池与开阔水域面积的增加造成的。在北纬87度和87.5度之间,航空遥感和AMSR-E卫星遥感获取的海冰密集度在空间格局上是相似的,但是,平均程度而言卫星遥感比航空遥感高估了18%。这可能是由于AMSR-E卫星遥感的空间分辨率是6.25公里,它不能区分融池和冰,不能区分浮冰之间小的水道。航空遥感影像在提供高分辨率海冰密集度和融池面积的独立估算方面发挥了重要作用,可以用来验证极点附近的星载遥感数据产品或者作为它的一个补充。
  • Boé J, Hall A, Qu Xin. 2009. September seaice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience, 2(5):341-343
    Cavalieri D J, Parkinson C L, Vinnikov K Y. 2003. 30-year satellite record reveals contrasting arctic and antarctic decadal sea ice variability. Geophysical Research Letters, 30(18):1970
    Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979-2010. The Cryosphere, 6(4):881-889
    Chen Hongxia, Liu Na, Zhang Zhanhai. 2013. Severe winter weather as a response to the lowest Arctic seaice anomalies. Acta Oceanologica Sinica, 32(10):11-15
    Comiso J C. 2003. Warming trends in the arctic from clear sky satellite observations. Journal of Climate, 16(21):3498-3510
    Conese C, Maselli F. 1992. Use of error matrices to improve area estimates with maximum likelihood classification procedures. Remote Sensing of Environment, 40(2):113-124
    Congalton R G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1):35-46
    Connor L N, Laxon S W, Ridout A L, et al. 2009. Comparison of En-visat radar and airborne laser altimeter measurements over arctic sea ice. Remote Sensing of Environment, 113(3):563-570
    Cui Hongyan, Qiao Fangli, Shu Qi, et al. 2015. Causes for different spatial distributions of minimum arctic seaice extent in 2007 and 2012. Acta Oceanologica Sinica, 34(9):94-101
    Darby D A, Jakobsson M, Polyak L. 2005. Icebreaker expedition col-lects key Arctic seafloor and ice data. EOS Transactions Americ-an Geophysical Union, 86(52):549-552
    Derksen C, Piwowar J, LeDrew E. 1997. Seaice melt-pond fraction as determined from low level aerial photographs. Arctic and Alpine Research, 29(3):345-351
    Grenfell T C, Maykut G A. 1977. The optical properties of ice and snow in the Arctic Basin. Journal of Glaciology, 18(80):445-463
    Grenfell T C, Perovich D K. 2004. Seasonal and spatial evolution of al-bedo in a snowice-land-ocean environment. Journal of Geo-physical Research, 109(C1):C01001
    Haas C, Hendricks S, Eicken H, et al. 2010. Synoptic airborne thick-ness surveys reveal state of Arctic sea ice cover. Geophysical Research Letters, 37(9):L09501
    Haas C, Pfaffling A, Hendricks S, et al. 2008. Reduced ice thickness in arctic transpolar drift favors rapid ice retreat. Geophysical Re-search Letters, 35(17):L17501
    Hall D K, Box J E, Casey K A, et al. 2008. Comparison of satellite-de-rived and in-situ observations of ice and snow surface temper-ature over Greeland. Remote Sensing of Environment, 112(10):3739-3749, doi: 10.1016/j.rse.2008.05.007
    Heygster G, Wiebe H, Spreen G, et al. 2009. AMSR-E geolocation and validation of sea ice concentrations based on 89 GHz data. Journal of Remote Sensing Society of Japan, 29(1):226-235
    Hudson S R. 2011. Estimating the global radiative impact of the sea ice-albedo feedback in the arctic. Journal of Geophysical Re-search, 116(D16):D16102
    Inoue J, Curry J A, Maslanik J A. 2008. Application of aerosondes to melt-pond observations over arctic sea ice. Journal of Atmo-spheric and Oceanographic Technology, 25(2):327-334
    Kawaguchi Y, Hutchings J K, Kikuchi T, et al. 2012. Anomalous seaice reduction in the Eurasian Basin of the Arctic Ocean during summer 2010. Polar Science, 6(1):39-53
    Kwok R, Rothrock D A. 2009. Decline in arctic sea ice thickness from submarine and ICESat records:1958-2008. Geophysical Re-search Letters, 36(15):L15501
    Lei Ruibo, Xie Hongjie, Wang Jia, et al. 2015. Changes in sea ice con-ditions along the Arctic Northeast Passage from 1979 to 2012. Cold Regions Science and Technology, 119:132-144
    Li Tao, Zhao Jinping. 2014. An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic. Acta Oceanologica Sinica, 33(12):24-31
    Liu Jiping, Curry J A, Hu Yongyun. 2004. Recent arctic sea ice variabil-ity:connections to the Arctic Oscillation and the ENSO. Geo-physical Research Letters, 31(9):L09211
    Lu Peng, Li Zhijun, Cheng Bin, et al. 2010. Sea ice surface features in arctic summer 2008:aerial observations. Remote Sensing of En-vironment, 114(4):693-699
    Markus T, Cavalieri D J. 2000. An enhancement of the NASA team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(3):1387-1398
    Miao Xin, Xie Hongjie, Ackley S F, et al. 2015. Object-based detection of Arctic sea ice and melt ponds using high spatial resolution aerial photographs. Cold Regions Science and Technology, 119:211-222
    Perovich D K, Grenfell T C, Light B, et al. 2009. Transpolar observations of the morphological properties of arctic sea ice. Journal of Geophysical Research, 114(C1):C00A40
    Perovich D K, Tucker III W B, Ligett K A. 2002. Aerial observations of the evolution of ice surface conditions during summer. Journal of Geophysical Research, 107(C10):SHE 24-1-SHE 24-14
    Rabenstein L, Hendricks S, Martin T, et al. 2010. Thickness and sur-face-properties of different seaice regimes within the arctic trans polar drift:data from summers 2001, 2004 and 2007. Journal of Geophysical Research, 115(C12):doi: 10.1029/2009JC005846
    Rothrock D A, Percival D B, Wensnahan M. 2008. The decline in arctic seaice thickness:separating the spatial, annual, and inter-annual variability in a quarter century of submarine data. Journal of Geophysical Research, 113(C5):C05003
    Scott Pegau W, Paulson C A. 2001. The albedo of arctic leads in sum-mer. Annals of Glaciology, 33(1):221-224
    Screen J A, Simmonds I, Deser C, et al. 2013. The atmospheric response to three decades of observed Arctic Sea ice loss. Journal of Climate, 26(4):1230-1248
    Sedláček J, Knutti R, Martius O, et al. 2012. Impact of a reduced Arctic sea ice cover on ocean and atmospheric properties. Journal of Climate, 25(1):307-319
    Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing us-ing AMSR-E 89-GHz channels. Journal of Geophysical Re-search, 113(C2):C02S03
    Stanton T P, Shaw W J, Hutchings J K. 2012. Observational study of relationships between incoming radiation, open water fraction, and ocean-toice heat flux in the transpolar drift:2002-2010. Journal of Geophysical Research, 117(C17):doi: 10.1029/2011JC007871
    Timmermans M L, Proshutinsky A, Krishfield R A, et al. 2011. Surface freshening in the Arctic Ocean's Eurasian Basin:an apparent consequence of recent change in the wind-driven circulation. Journal of Geophysical Research, 116(C8):C00D03
    Tschudi M A, Curry J A, Maslanik J A. 2001. Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA. Journal of Geophysical Research, 106(D14):15335-15344
    Tucker III W B, Gow A J, Meese D A, et al. 1999. Physical characteristics of summer sea ice across the Arctic Ocean. Journal of Geo-physical Research, 104(C1):1489-1504
    Wang Muyin, Overland J E. 2009. A sea ice free summer arctic within 30 years?. Geophysical Research Letters, 36(7):doi: 10.1029/2009GL037820
    Xie Hongjie, Lei Ruibo, Ke Changqing, et al. 2013. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise. The Cryosphere, 7(4):1057-1072
  • 加载中
计量
  • 文章访问数:  1233
  • HTML全文浏览量:  40
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-07
  • 修回日期:  2016-01-28

目录

    /

    返回文章
    返回