Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus

LI Jinshou LUO Fen LIU Liyue RUAN Junfeng WANG Nannan

李进寿, 罗芬, 刘立跃, 阮俊峰, 王楠楠. 联苯菊酯暴露对雄性褐菖鲉精巢发育的干扰[J]. 海洋学报英文版, 2017, 36(2): 57-61. doi: 10.1007/s13131-017-1001-7
引用本文: 李进寿, 罗芬, 刘立跃, 阮俊峰, 王楠楠. 联苯菊酯暴露对雄性褐菖鲉精巢发育的干扰[J]. 海洋学报英文版, 2017, 36(2): 57-61. doi: 10.1007/s13131-017-1001-7
LI Jinshou, LUO Fen, LIU Liyue, RUAN Junfeng, WANG Nannan. Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus[J]. Acta Oceanologica Sinica, 2017, 36(2): 57-61. doi: 10.1007/s13131-017-1001-7
Citation: LI Jinshou, LUO Fen, LIU Liyue, RUAN Junfeng, WANG Nannan. Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus[J]. Acta Oceanologica Sinica, 2017, 36(2): 57-61. doi: 10.1007/s13131-017-1001-7

联苯菊酯暴露对雄性褐菖鲉精巢发育的干扰

doi: 10.1007/s13131-017-1001-7
基金项目: The Natural Science Foundation of Fujian Province under contract No. 2013N0029; the Provincial Colleges and Universities in Fujian Province Department of Education Scientific Research Fund under contract No. JK2012061.

Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus

  • 摘要: 联苯菊酯是广泛应用于农业、园林及住宅等领域的拟除虫菊酯类杀虫剂,然而有关联苯菊酯对鱼类生殖毒性的研究却很少。本研究旨在探讨联苯菊酯对褐菖鲉精巢发育的影响及其相关机制。褐菖鲉在以浓度分别为1、10、100 ng·L-1的联苯菊酯暴露50 d后,各暴露组精巢成熟精子数量均较对照组出现大量减少并在精巢小叶中积累大量的处于不同发育时期的未成熟精细胞。精巢17-β雌激素与雄激素水平在联苯菊酯暴露后均出现显著下降。精巢在联苯菊酯暴露后caspase-3活性与暴露药物呈剂量依赖性上升,TUNEL分析表明联苯菊酯的暴露导致精巢生殖细胞的凋亡,这可能是抑制精巢精子发生的主要原因。
  • Beggel S, Connon R, Werner I, et al. 2011. Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol, 105(1-2):180-188
    Borg B. 1994. Androgens in teleost fishes. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol, 109(3):219-245
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem, 72(1-2):248-254
    Brander S M, He Guochun, Smalling K L, et al. 2012. The in vivoestrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. Environ Toxicol Chem, 31(12):2848-2855
    Callard G V, Tchoudakova A V, Kishida M, et al. 2001. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem Mol Biol, 79(1-5):305-314
    Cohen G M. 1997. Caspases:the executioners of apoptosis. Biochem J, 326(1):1-16
    DeGroot B C, Brander S M. 2014. The role of P450 metabolism in the estrogenic activity of bifenthrin in fish. Aquat Toxicol, 156:17-20
    Fenske M, Segner H. 2004. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat Toxicol, 67(2):105-126
    Forsgren K L, Riar N, Schlenk D. 2013. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. Gen Comp Endocrinol, 186:101-107
    Harper H E, Pennington P L, Hoguet J, et al. 2008. Lethal and sublethal effects of the pyrethroid, bifenthrin, on grass shrimp (Palaemonetes pugio) and sheepshead minnow (Cyprinodon variegatus). J Environ Sci Health B, 43(6):476-483
    Li Jinshou, Sun Lingbin, Zuo Zhenghong, et al. 2012. Exposure to paclobutrazol disrupts spermatogenesis in male Sebastiscus marmoratus. Aquat Toxicol, 122-123:120-124
    Migliarini B, Campisi A M, Maradonna F, et al. 2005. Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger. Gen Comp Endocrnol, 142(1-2):241-247
    Miura T, Ohta T, Miura C I, et al. 2003. Yamauchi K. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor. Endocrinology, 144(12):5504-5510
    Montanha F P, Galeb L A G, Mikos J D, et al. 2012. Pyrethroid toxicity in silver catfish, Rhamdia quelen. Pesq Veter Brasil, 32(12):1297-1303
    Moore A, Waring C P. 2001. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol, 52(1):1-12
    Pennington P L, Harper-Laux H, Sapozhnikova Y, et al. 2014. Environmental effects and fate of the insecticide bifenthrin in a salt-marsh mesocosm. Chemosphere, 112:18-25
    Pfaffl M W, Horgan G W, Dempfle L. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 30(1):1-12
    Schulz R W, de França L R, Lareyre J J, et al. 2010. Spermatogenesis in fish. Gen Comp Endocrinol, 165(3):390-411
    Singh P B, Singh V. 2008. Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17β and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere, 72(3):422-431
    Srivastava R K, Yadav K K, Trivedi S P. 2008. Devicyprin induced gonadal impairment in a freshwater food fish, Channa punctatus (Bloch). J Environ Biol, 29(2):187-191
    Sun Lingbin, Zuo Zhenghong, Luo Hongmin, et al. 2011. Chronic Exposure to Phenanthrene Influences the Spermatogenesis of Male Sebastiscus marmoratus:U-Shaped Effects and the Reason for Them. Environ Sci Technol, 45(23):10212-10218
    Yılmaz M, Gül A, Erbaşlı K. 2004. Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulata, Pallas, 1859). Chemosphere, 56(4):381-385
    Zheng S, Chen Bin, Qiu Xiaoyan, et al. 2016. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144:1177-1192
  • 加载中
计量
  • 文章访问数:  1075
  • HTML全文浏览量:  74
  • PDF下载量:  972
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2016-10-13

目录

    /

    返回文章
    返回