The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field

REN Zhiyuan YUAN Ye WANG Peitao FAN Tingting WANG Juncheng HOU Jingming

任智源, 原野, 王培涛, 范婷婷, 王君成, 侯京明. 2015年9月16日智利Mw 8.3级地震:海啸波从近场到远场的特征分析[J]. 海洋学报英文版, 2017, 36(5): 73-82. doi: 10.1007/s13131-017-1005-3
引用本文: 任智源, 原野, 王培涛, 范婷婷, 王君成, 侯京明. 2015年9月16日智利Mw 8.3级地震:海啸波从近场到远场的特征分析[J]. 海洋学报英文版, 2017, 36(5): 73-82. doi: 10.1007/s13131-017-1005-3
REN Zhiyuan, YUAN Ye, WANG Peitao, FAN Tingting, WANG Juncheng, HOU Jingming. The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field[J]. Acta Oceanologica Sinica, 2017, 36(5): 73-82. doi: 10.1007/s13131-017-1005-3
Citation: REN Zhiyuan, YUAN Ye, WANG Peitao, FAN Tingting, WANG Juncheng, HOU Jingming. The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field[J]. Acta Oceanologica Sinica, 2017, 36(5): 73-82. doi: 10.1007/s13131-017-1005-3

2015年9月16日智利Mw 8.3级地震:海啸波从近场到远场的特征分析

doi: 10.1007/s13131-017-1005-3
基金项目: The Public Science and Technology Research Funds Projects of Ocean under contract No. 201405026; the National Key Research and Development Program of China under contract No. 2016YFC1401500; the Opening Fund of State Key Laboratory of Ocean Engineering under contract No. 1604.

The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field

  • 摘要: 2015年9月16日,智利海岸发生Mw 8.3级地震,地震引发了局地海啸,在Coquimbo站监测到了4.4 m的海啸波。本文分别针对USGS的单一板块震源和NOAA海啸源数据库反演得到的多板块震源,基于实测数据分析和数值模拟相结合的方法分析海啸波从近场到远场的特征规律。本文选取了16个深水浮标,10个近岸潮位站,以及10个远场潮位站。采用基于非线性浅水方程的数值模型模拟得到的海啸波面时间序列与实测结果在深水浮标处较为吻合。由于近岸地形复杂、地形精度的精细度不够,在近岸潮位站的模拟结果与监测数据存在偏差。在近场的沿岸,海啸的最大波幅从0.1 m到2 m分布(Coquimbo站除外)。通过分析海啸波在深水中的传播过程,发现最大波幅从9.8 cm衰减为0.8 cm,表明在太平洋范围的深水传播过程是厘米尺度的海啸,频谱分析显示海啸波的周期为13~17 min和32 min。在距离震中超过一万公里的近岸,由于海啸的爬高过程和陆地边界反射引起的共振,使得海啸波的最大波幅增大到0.2 m~0.8 m。尽管此次地震海啸事件的影响较小,在当地仍然引起了不可忽视的海啸灾害以及整个太平洋范围内的海水波动。
  • An Chao, Sepúlveda I, Liu P L F. 2014. Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11):3988-3994
    Aránguiz R, González G, González J, et al. 2016. The 16 September 2015 Chile Tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173(2):333-348
    Arcos M E M, LeVeque R J. 2015. Validating velocities in the GeoClaw tsunami model using observations near Hawaii from the 2011 Tohoku tsunami. Pure and Applied Geophysics, 172(3-4):849-867
    Catalán P A, Aránguiz R, González G, et al. 2015. The 1 April, 2014 Pisagua tsunami:observations and modeling. Geophysical Research Letters, 42(8):2918-2925
    Contreras-López M, Winckler P, Sepúlveda I, et al. 2016. Field survey of the 2015 Chile Tsunami with emphasis on coastal wetland and conservation areas. Pure and Applied Geophysics, 173(2):349-367
    DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1):1-80
    Heidarzadeh M, Satake K. 2013. Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure and Applied Geophysics, 170(6-8):1275-1293
    Heidarzadeh M, Murotani S, Satake K, et al. 2016. Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2):643-650
    Heidarzadeh M, Satake K, Murotani S, et al. 2015. Deep-water characteristics of the trans-Pacific tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172(3-4):719-730
    Kendrick E, Bevis M, Smalley Jr R, et al. 2001. An integrated crustal velocity field for the central Andes. Geochemistry, Geophysics, Geosystems, 2(11):doi: 10.1029/2001GC000191
    LeVeque R J, George D L, Berger M J. 2011. Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 20:211-289
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135-1154
    Okal E A. 2011. Tsunamigenic earthquakes:past and present milestones. Pure and Applied Geophysics, 168(6-7):969-995
    Rabinovich A B, Candella R N, Thomson R E. 2013. The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters, 40(12):3157-3162
    Ren Zhiyuan, Liu Hua, Wang Benlong, et al. 2014. An investigation on multi-buoy inversion method for tsunami warning system in South China Sea. Journal of Earthquake and Tsunami, 8(3):1440004
    Ren Zhiyuan, Wang Benlong, Fan Tingting, et al. 2013. Numerical analysis of impacts of 2011 Japan Tohoku tsunami on China Coast. Journal of Hydrodynamics, Serise B, 25(4):580-590
    Ren Zhiyuan, Zhao Xi, Liu Hua. 2015. Dispersion effects on tsunami propagation in South China Sea. Journal of Earthquake and Tsunami, 9(5):1540001
    Tang Liujuan, Titov V V, Moore C, et al. 2016. Real-time assessment of the 16 September 2015 Chile Tsunami and implications for near-field forecast. Pure and Applied Geophysics, 173(2):369-387
    Watada S, Kusumoto S, Satake K. 2014. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research:Solid Earth, 119(5):4287-4310
    Ye Lingling, Lay T, Kanamori H, et al. 2016. Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure and Applied Geophysics, 173(2):321-332
    Yu Fujiang, Yuan Ye, Zhao Lianda, et al. 2011. Evaluation of potential hazards from teletsunami in China:tidal observations of a teletsunami generated by the Chile 8.8 Mw earthquake. Chinese Science Bulletin, 56(11):1108-1116
  • 加载中
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  37
  • PDF下载量:  786
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-06

目录

    /

    返回文章
    返回