Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean

ZHANG Shugang BIAN Lingen ZHAO Jinping LI Min CHEN Shizhe JIAO Yutian CHEN Ping

张树刚, 卞林根, 赵进平, 李民, 陈世哲, 矫玉田, 陈萍. 融池热力学模式以及它在2010年夏季北极中央区的应用研究[J]. 海洋学报英文版, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x
引用本文: 张树刚, 卞林根, 赵进平, 李民, 陈世哲, 矫玉田, 陈萍. 融池热力学模式以及它在2010年夏季北极中央区的应用研究[J]. 海洋学报英文版, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x
ZHANG Shugang, BIAN Lingen, ZHAO Jinping, LI Min, CHEN Shizhe, JIAO Yutian, CHEN Ping. Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x
Citation: ZHANG Shugang, BIAN Lingen, ZHAO Jinping, LI Min, CHEN Shizhe, JIAO Yutian, CHEN Ping. Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x

融池热力学模式以及它在2010年夏季北极中央区的应用研究

doi: 10.1007/s13131-017-1019-x
基金项目: The National Natural Science Foundation of China under contract No. 41406208; the Global Change Research of National Important Research Project on Science under contract No. 2015CB953900; the Scientific and Technology Development Fund of Shandong Academy under contract No. 2013QN042; the Key Program of National Natural Science Foundation of China under contract No. 41330960; the Open Research Fund of the State Oceanic Administration of the People's Republic of China Key Laboratory for Polar Science under contract No. 3KP201203.

Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean

  • 摘要: 本文应用2010年夏季中国北极科学考察期间(CHINARE-2010)获得的观测数据建立了一个一维融池热力学模式。本文研究表明在太阳辐射能的作用下整个融池在垂直方向存在对流混合,从而导致整个融池水的温度和盐度比较均匀。大约有85%的太阳入射辐射穿过融池表面进入融池。其中进入融池的太阳辐射能一部分以感热和潜热的形式释放到大气中,但是这部分能量和进入融池的太阳辐射能相比相对较小(大约占15%)。超过59%的入射能量被融池水吸收,从而导致了融池水的温度发生改变。模拟结果表明融池水的温度主要在0.0-0.3℃之间,并且呈现日周期变化特征。模拟结果还显示融池下面的海冰融化速率是海冰底层融化速率的2-3倍。同时,当融池深度小于0.4米时,海冰融化速率变化比较快;当融池深度大于0.4米时,海冰融化速率变化比较慢(大约每天融化1cm)。
  • Bian Lingen, Ma Yongfeng, Lu Changgui. 2011. Experiment of turbulent flux near surface layer and its parameterizations on a drift ice over the Arctic Ocean. Haiyang Xuebao (in Chinese), 33(2):27-35
    Bitz C M, Lipscomb W H. 1999. An energy-conserving thermodynamic model of sea ice. J Geophys Res, 104(C7):15669-15677
    Bogorodskiy P V, Marchenko A V. 2014. Thermodynamic effects accompanying freezing of two water layers separated by a sea ice sheet. Oceanology, 54(2):152-159
    Bolsenga S J. 1978. Photosynthetically active radiation transmittance through ice. NOAA Technical Memorandum ERL GLERL-18. Ann Arbor, Michigan:Great Lakes Environmental Research Laboratory, US Department of Commerce
    Cox G F N, Weeks W F. 1974. Salinity variations in sea ice. J Glaciol, 13(67):109-120
    Ebert E E, Curry J A. 1993. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J Geophys Res, 98(C6):10085-10109
    Eicken H, Gradinger R, Ivanov B, et al. 1996. Surface melt puddles on multi-year sea ice in the Eurasian Arctic. In:Proceedings of ACSYS Conference on the Dynamics of the Arctic Climate System World Climate Research Programme. Göteborg, Sweden:WMO/TD, 267-271
    Fetterer F, Untersteiner N. 1998. Observations of melt ponds on Arctic sea ice. J Geophys Res, 103(C11):24821-24835
    Flocco D, Feltham D L, Turner A K. 2010. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J Geophys Res, 115(C8):C08012, doi: 10.1029/2009JC005568
    Flocco D, Schroeder D, Feltham D L, et al. 2012. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J Geophys Res, 117(C9):C09032, doi: 10.1029/2012JC008195
    Flocco D, Feltham D L, Bailey E, et al. 2015. The refreezing of melt ponds on Arctic sea ice. J Geophys Res, 120(2):647-659,, doi: 10.1002/2014JC010140
    Grenfell T C, Maykut G A. 1977. The optical properties of ice and snow in the Arctic Basin. J Glaciol, 18(80):445-463
    Heron R, Woo M K. 1994. Decay of a high Arctic lake-ice cover:observations and modelling. J Glaciol, 40(135):283-292
    Landy J, Ehn J, Shields M, et al. 2014. Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago. J Geophys Res, 119(5):3054-3075
    Lei Ruibo, Zhang Zhanhai, Matero I, et al. 2012. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Res, 31(1):17325, doi: 10.3402/polar.v31i0.17325
    Louis J F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteor, 17(2):187-202
    Lüthje M, Feltham D L, Taylor P D, et al. 2006. Modeling the summertime evolution of sea-ice melt ponds. J Geophys Res, 111(C2):C02001, doi: 10.1029/2004JC002818
    Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J Geophys Res, 76:1550-1575
    Mellor G L, Kantha L. 1989. An ice-ocean coupled model. J Geophys Res, 94(C8):10937-10954
    Notz D. 2005. Thermodynamic and fluid-dynamical processes in sea ice[dissertation]. Cambridge:University of Cambridge
    Pegau W S. 2002. Inherent optical properties of the central Arctic surface waters. J Geophys Res, 107(C10):8035, doi: 10.1029/2000JC000382
    Perovich D K. 1990. Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers. J Geophys Res, 95(C6):9557-9567
    Perovich D K, Grenfell T C, Light B, et al. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res, 107(C10):8044, doi: 10.1029/2000JC00438
    Podgorny I A, Grenfell T C. 1996. Partitioning of solar energy in melt ponds from measurements of pond albedo and depth. J Geophys Res, 101(C10):22737-22748,, doi: 10.1029/96JC02123
    Rogers R R, Yau M K. 1989. A Short Course in Cloud Physics. 3rd ed. New York:Pergamon Press
    Sandven S, Johannesen O M. 2006. Sea ice monitoring by remote sensing. In:Gower J F R, ed. Manual of Remote Sensing:Remote Sensing of the Marine Environment. 3rd ed. Bethesda:American Society for Photogrammetry & Remote Sensing
    Schröder D, Feltham D L, Flocco D, et al. 2014. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat Climate Change, 4(5):353-357,, doi: 10.1038/nclimate2203
    Semtner A J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr, 6(3):379-389
    Skyllingstad E D, Paulson C A, Perovich D K. 2009. Simulation of melt pond evolution on level ice. J Geophys Res, 114(C12):C12019, doi: 10.1029/2009JC005363
    Taylor P D. 2004. Mathematical modelling the formation and evolution of melt ponds on sea ice[dissertation]. London, UK:University of London
    Taylor P D, Feltham D L. 2004. A model of melt pond evolution on sea ice. J Geophys Res, 109(C12):C12007, doi: 10.1029/2004JC002361
    Untersteiner N. 1961. On the mass and heat budget of Arctic sea ice. Arch Meteor Geophys Bioklimatol Ser A, 12(2):151-182
    Weeks W F, Ackley S F. 1986. The growth, structure, and properties of sea ice. In:Untersteiner N, ed. The Geophysics of Sea Ice. New York, US:Springer, 9-164
    Xie H, Lei R, Ke C, et al. 2013. Summer sea ice characteristics and morphology in the pacific Arctic sector as observed during the CHINARE 2010 cruise. Cryosphere, 7(4):1057-1072
    Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. J Geophys Res, 101(C11):25753-25766
    Zhang Shugang, Zhao Jinping, Shi Jiuxin, et al. 2014. Surface heat budget and solar radiation allocation at a melt pond during summer in the central Arctic Ocean. J Ocean Univ China, 13(1):45-50
  • 加载中
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  41
  • PDF下载量:  976
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-19

目录

    /

    返回文章
    返回