Observed and modelled snow and ice thickness in the Arctic Ocean with CHINARE buoy data

TIAN Zhongxiang CHENG Bin ZHAO Jiechen VIHMA Timo ZHANG Wenliang LI Zhijun ZHANG Zhanhai

田忠翔, 程斌, 赵杰臣, VIHMATimo, 张文良, 李志军, 张占海. 基于中国北极考察布放浮标观测和数值模拟的海冰和积雪厚度变化分析[J]. 海洋学报英文版, 2017, 36(8): 66-75. doi: 10.1007/s13131-017-1020-4
引用本文: 田忠翔, 程斌, 赵杰臣, VIHMATimo, 张文良, 李志军, 张占海. 基于中国北极考察布放浮标观测和数值模拟的海冰和积雪厚度变化分析[J]. 海洋学报英文版, 2017, 36(8): 66-75. doi: 10.1007/s13131-017-1020-4
TIAN Zhongxiang, CHENG Bin, ZHAO Jiechen, VIHMA Timo, ZHANG Wenliang, LI Zhijun, ZHANG Zhanhai. Observed and modelled snow and ice thickness in the Arctic Ocean with CHINARE buoy data[J]. Acta Oceanologica Sinica, 2017, 36(8): 66-75. doi: 10.1007/s13131-017-1020-4
Citation: TIAN Zhongxiang, CHENG Bin, ZHAO Jiechen, VIHMA Timo, ZHANG Wenliang, LI Zhijun, ZHANG Zhanhai. Observed and modelled snow and ice thickness in the Arctic Ocean with CHINARE buoy data[J]. Acta Oceanologica Sinica, 2017, 36(8): 66-75. doi: 10.1007/s13131-017-1020-4

基于中国北极考察布放浮标观测和数值模拟的海冰和积雪厚度变化分析

doi: 10.1007/s13131-017-1020-4
基金项目: The National Natural Science Foundation of China under contract Nos 41428603, 41376188, 41376005 and 41506221; the Academy of Finland under contract No. 283101; the Chinese Arctic and Antarctic Administration Project under contract No. 201614; the Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No. CHINARE-03-01.

Observed and modelled snow and ice thickness in the Arctic Ocean with CHINARE buoy data

  • 摘要: 本文利用中国北极科考布放的冰浮标研究了北极积雪和海冰的厚度变化。依托中国北极科学考察,2003年布放了两套Zeno®冰浮标,2014年布放了新型高分辨率温度链海冰质量平衡浮标(SIMBA)。根据浮标数据,分析提取了中国北极科考区域的冰雪厚度。利用Zeno®观测的海冰垂直温度剖面以及近地表气温数据,使用一个简化的计算过程,估算了平均积雪厚度。根据SIMBA垂向温度链的观测数据,计算了海冰和积雪的厚度。同时利用一维雪-冰热力学模式HIGHTSI,选取欧洲中心(ECMWF)的再分析资料和预报数据作为大气强迫场,模拟了浮标漂移轨迹上的海冰和积雪厚度变化。2003-2004年,Zeno®在很小的范围内漂移。HIGHTSI模拟的雪厚变化与Zeno®的观测数据分析结果比较一致。2014年布放的其中一套SIMBA浮标,共持续观测了15个月,从81.1°N,157.4°W漂移到了73.5°N,134.9°W。2015年5月,积雪融化之前,海冰厚度从其初始位置的1.97m增长到最大值2.45m。SIMBA最后观测(2015年11月)到的冰厚约为1m。HIGHTSI模拟的冰厚变化与SIMBA观测数据的分析结果相近。尤其在考虑海洋热通量的季节变化后,显著提高了模拟冰厚与SIMBA分析结果的一致性。但SIMBA分析的雪厚与HIGHTSI的模拟结果差别较大。在寒冷季节由SIMBA数据分析的冰厚比较可靠,而夏季如何利用SIMBA获得可靠的积雪和海冰厚度仍然具有挑战性。
  • Bennett T J. 1982. A coupled atmosphere-sea ice model study of the role of sea ice in climatic predictability. J Atmos Sci, 39(7):1456-1465
    Blunden J, Arndt D S. 2012. State of the climate in 2011. Bull Am Meteor Soc, 93(7):S1-S282
    Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the community climate system model, version three. NCAR/TN-463+STR, NCAR Tech Note. Boulder, Colorado:National Center for Atmospheric Research, 1-78
    Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979-2010. Cryosphere, 6(4):881-889
    Cheng Bin, Launiainen J. 1998. A one-dimensional thermodynamic air-ice-water model:technical and algorithm description report. Rep Ser Finn Inst Mar Res, 37:15-35
    Cheng Bin, Launiainen J, Vihma T. 2003. Modelling of superimposed ice formation and sub-surface melting in the Baltic Sea. Geophysica, 39(1-2):31-50
    Cheng Bin, Vihma T, Pirazzini R, et al. 2006. Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea. Ann Glaciol, 44(1):139-146
    Cheng Bin, Zhang Zhanhai, Vihma T, et al. 2008. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. J Geophys Res, 113(C9):C09020
    Cheng Bin, Vihma T, Rontu L, et al. 2014. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajarvi, northern Finland. Tellus A, 66(1):21564
    Cheng Bin, Zhao Jiechen, Vihma T. 2015. Detection of snow and ice thickness from temperature profiles of unmanned ice mass balance buoys. In:Proceedings of the 30th International Symposium on Okhotsk Sea and Sea Ice. Mombetsu, Hokkaido, Japan:Okhotsk Sea and Cold Ocean Research Association
    Efimova N A. 1961. On methods of calculating monthly values of net longwave radiation. Meteor Gidrol, 10:28-33
    Gascard J C, Festy J, le Goff H, et al. 2008. Exploring Arctic transpolar drift during dramatic sea ice retreat. EOS, 89(3):21-22
    Huwald H, Tremblay L B, Blatter H. 2005. Reconciling different observational data sets from surface heat budget of the Arctic Ocean (SHEBA) for model validation purposes. J Geophys Res, 110(C5):C05009
    Jackson K, Meldrum D, Wilkinson J, et al. 2013. A novel and low cost sea ice mass balance buoy. Journal of Atmospheric & Oceanic Technology, 30(11):2676-2688
    Jacobs J D. 1978. Radiation climate of Broughton Island. In:Barry R G, Jacobs J D, eds. Energy Budget Studies in Relation to Fast-Ice Breakup Processes in Davis Strait. Occasional Paper 26. Boulder, USA:Inst Arctic Alpinc Res, Univ of Colorado, 105-120
    Jakobson E, Vihma T. 2010. Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int J Climatol, 30(14):2175-2194
    Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records:1958-2008. Geophys Res Lett, 36(15):L15501
    Launiainen J, Cheng Bin. 1998. Modelling of ice thermodynamics in natural water bodies. Cold Reg Sci Technol, 27(3):153-178
    Lei Ruibo, Li Na, Heil P, et al. 2014. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. J Geophys Res, 119(1):537-547
    Leppäranta M. 1993. A review of analytical models of sea-ice growth. Atmosphere-Ocean, 31(1):123-138
    Maksimovich E, Vihma T. 2012. The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J Geophys Res, 117(C7):C07012
    Perovich D K, Grenfell T C, Richter-Menge J A, et al. 2003. Thin and thinner:sea ice mass balance measurements during SHEBA. J Geophys Res, 108(C3):8050
    Perovich D K, Richter-Menge J A. 2015. Regional variability in sea ice melt in a changing Arctic. Philos Trans Royal Soc A Math Phys Eng Sci, 373(2045):20140165
    Persson P O G, Fairall C W, Andreas E L, et al. 2002. Measurements near the Atmospheric Surface Flux Group tower at SHEBA:near-surface conditions and surface energy budget. J Geophys Res Atmos, 107(C10):8045
    Richter-Menge J A, Perovich D K, Elder B C, et al. 2006. Ice mass-balance buoys:a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Ann Glaciol, 44(1):205-210
    Semmler T, Cheng Bin, Yang Yu, et al. 2012. Snow and ice on Bear Lake (Alaska)-sensitivity experiments with two lake ice models. Tellus A, 64(1):17339
    Shine K P. 1984. Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quart J Roy Meteor Soc, 110(465):747-764
    Uttal T, Curry J A, Mcphee M G, et al. 2002. Surface heat budget of the Arctic Ocean. Bull Am Meteor Soc, 83(2):255-276
    Vihma T, Uotila J, Cheng Bin, et al. 2002. Surface heat budget over the Weddell Sea:buoy results and model comparisons. J Geophys Res, 107(C2):3013
    Wang Caixin, Cheng Bin, Wang Keguang, et al. 2015. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard. Polar Res, 34(1):20828
    Warren S G, Rigor I G, Untersteiner N, et al. 1999. Snow depth on Arctic sea ice. J Climate, 12(6):1814-1829
    Yang Yu, Cheng Bin, Kourzeneva E, et al. 2013. Modelling experiments on air-snow-ice interactions over Kilpisjärvi, a lake in northern Finland. Boreal Environ Res, 18(5):341-358
    Yang Yu, Leppäranta M, Cheng Bin, et al. 2012. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A, 64(1):17202
    Zhang Zhanhai. 2004. The Report of 2003 Chinese Arctic Research Expedition (in Chinese),:1-229
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  49
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02

目录

    /

    返回文章
    返回