The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment

SONG Mirong LIU Jiping

宋米荣, 刘骥平. 变暖背景下北极海冰减少在冬季北半球高纬大陆降雪增加中的作用[J]. 海洋学报英文版, 2017, 36(8): 34-41. doi: 10.1007/s13131-017-1021-3
引用本文: 宋米荣, 刘骥平. 变暖背景下北极海冰减少在冬季北半球高纬大陆降雪增加中的作用[J]. 海洋学报英文版, 2017, 36(8): 34-41. doi: 10.1007/s13131-017-1021-3
SONG Mirong, LIU Jiping. The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment[J]. Acta Oceanologica Sinica, 2017, 36(8): 34-41. doi: 10.1007/s13131-017-1021-3
Citation: SONG Mirong, LIU Jiping. The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment[J]. Acta Oceanologica Sinica, 2017, 36(8): 34-41. doi: 10.1007/s13131-017-1021-3

变暖背景下北极海冰减少在冬季北半球高纬大陆降雪增加中的作用

doi: 10.1007/s13131-017-1021-3
基金项目: The National Natural Science Foundation of China under contract No. 41305097; the National Major Research High Performance Computing Program of China under contract No. 2016YFB0200800.

The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment

  • 摘要: 过去的几个冬季中,北美、欧洲、西伯利亚和东亚大部分地区经历了冷冬和强降雪,而这与北极海冰的快速减少有关。尽管北极海冰减少在冷冬和强降雪中的作用仍存在争议,但这种新兴的气候反馈在未来变暖背景下是否会持续仍值得关注。中等排放情境下的气候模式模拟结果揭示,欧洲东北部、亚洲中部北部、北美北部的冬季降雪增加会成为贯穿21世纪的一个稳健的特征。21世纪这些区域冬季降雪增加的主要原因是北极秋季海冰的减少(很大的外部强迫),而冬季北极涛动的变化(北半球主要的自然变化形态)对降雪增加的作用很小。这一结果不仅体现在多模式平均上,而且每个单独模式的结果依然如此。我们认为海冰-降雪之间的强反馈作用可能已经出现,并且在接下来的几十年中这种强反馈作用可能会增强,北半球高纬地区的强降雪事件也会增加。
  • Bretherton C S, Smith C, Wallace J M. 1992. An intercomparison of methods for finding coupled patterns in climate data. J Climate, 5(6):541-560
    Cattiaux J, Cassou C. 2013. Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys Res Lett, 40(14):3682-3687
    Cohen J, Foster J, Barlow M, et al. 2010. Winter 2009-2010:a case study of an extreme Arctic Oscillation event. Geophys Res Lett, 37(17):L17707
    Cohen J L, Furtado J C, Barlow M A, et al. 2012. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett, 7(1):014007
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett, 39(6):L06801
    Ghatak D, Deser C, Frei A, et al. 2012. Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979-2008. J Geophys Res, 117(D23):D23108
    Knutti R, Sedláček J. 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nat Climate Change, 3(4):369-373
    Krasting J P, Broccoli A J, Dixon K W, et al. 2013. Future changes in Northern Hemisphere snowfall. J Climate, 26(20):7813-7828
    Kug J S, Jeong J H, Jang Y S, et al. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat Geosci, 8(10):759-762
    Liu Jiping, Curry J A, Wang Huijun, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci U S A, 109(11):4074-4079
    Liu Jiping, Song Mirong, Horton R M, et al. 2013. Reducing spread in climate model projections of a September ice-free Arctic. Proc Natl Acad Sci U S A, 110(31):12571-12576
    Mori M, Watanabe M, Shiogama H, et al. 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci, 7(12):869-873
    Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282):747-756
    Notz D, Marotzke J. 2012. Observations reveal external driver for Arctic sea-ice retreat. Geophys Res Lett, 39(8):L08502
    O'Gorman P A. 2014. Contrasting responses of mean and extreme snowfall to climate change. Nature, 512(7515):416-418
    Räisänen J. 2008. Warmer climate:less or more snow?. Climate Dyn, 30(2-3):307-319
    Rangwala I, Sinsky E, Miller J R. 2013. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett, 8(2):024040
    Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification:a research synthesis. Glob Planet Change, 77(1-2):85-96
    Solomon S, Qin D, Manning M, et al. 2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,:996
    Stroeve J C, Kattsov V, Barrett A, et al. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett, 39(16):L16502
    Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of Cmip5 and the experiment design. Bull Am Meteor Soc, 93(4):485-498
    Thompson D W J, Wallace J M. 2001. Regional climate impacts of the Northern Hemisphere annular mode. Science, 293(5527):85-89
    Thompson D W J, Wallace J M, Hegerl G C. 2000. Annular modes in the extratropical circulation:Part Ⅱ. trends. J Climate, 13(5):1018-1036
  • 加载中
计量
  • 文章访问数:  1152
  • HTML全文浏览量:  53
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02

目录

    /

    返回文章
    返回