Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008

SUN Heng GAO Zhongyong LU Peng XIU Peng CHEN Liqi

孙恒, 高众勇, 修鹏, 卢鹏, 陈立奇. 2008年夏季加拿大海盆净二氧化碳吸收量评估[J]. 海洋学报英文版, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9
引用本文: 孙恒, 高众勇, 修鹏, 卢鹏, 陈立奇. 2008年夏季加拿大海盆净二氧化碳吸收量评估[J]. 海洋学报英文版, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9
SUN Heng, GAO Zhongyong, LU Peng, XIU Peng, CHEN Liqi. Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008[J]. Acta Oceanologica Sinica, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9
Citation: SUN Heng, GAO Zhongyong, LU Peng, XIU Peng, CHEN Liqi. Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008[J]. Acta Oceanologica Sinica, 2017, 36(8): 94-100. doi: 10.1007/s13131-017-1028-9

2008年夏季加拿大海盆净二氧化碳吸收量评估

doi: 10.1007/s13131-017-1028-9
基金项目: The National Natural Science Foundation of China (NSFC) under contract Nos 41476173 and 41406221; the Chinese Projects for Investigations and Assessments of the Arctic and AntArctic under contract Nos CHINARE2012-04-04 and 2012-04-03; the Fujian Science and Technology Innovation Leader Project 2016; the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2014006.

Evaluation of the net CO2 uptake in the Canada Basin in the summer of 2008

  • 摘要: 第三次中国北极考察队(CHINARE)于2008年夏季进行。在调查中,测量了加拿大海盆表层海水的二氧化碳分压(pCO2),并采集二氧化碳海水样品进行测量。研究确定了加拿大海盆pCO2的分布情况,对影响因素进行了分析,并对加拿大海盆的海洋二氧化碳通量进行了评估。加拿大海盆分为3个区域:无冰区(77°N以南),海冰部分覆盖区(77°N-80°N)和海冰严重覆盖区(80°N以北)。在无冰区,pCO2较高(320至368μatm),主要是由于在短时间内与大气CO2快速平衡。在海冰部分覆盖区,由于海冰边缘水华和冰融水稀释,表层pCO2相对较低(250至270μatm)。在海冰严重覆盖区,由于生物对二氧化碳的清除,低pCO2水向北运输和海冰覆盖的阻碍,海水pCO2在270和300μatm之间变化。调查期间,加拿大海盆表层海水pCO2是不饱和的,是大气CO2的净汇。无冰区,海冰部分覆盖区和海冰严重覆盖区的夏季净CO2吸收量分别为4.14±1.08 Tg C/a,1.79±0.19 Tg C/a和0.57±0.03 Tg C/a (1 Tg=1012g)。总体而言,2008年夏季加拿大海盆净CO2吸收量为6.5±1.3 Tg C/a,占北冰洋二氧化碳吸收量的4-10%。
  • Anderson L G, Björk G, Holby O, et al. 1994. Water masses and circulation in the Eurasian Basin:results from the Oden 91 expedition. Journal of Geophysical Research, 99(C2):3273-3283
    Anderson L G, Dyrssen D, Jones E P. 1990. An assessment of the transport of atmospheric CO2 into the Arctic Ocean. Journal of Geophysical Research, 95(C2):1703-1711
    Anderson L G, Olsson K, Chierici M. 1998a. A carbon budget for the Arctic Ocean. Global Biogeochemical Cycles, 12(3):455-465
    Anderson L G, Olsson K, Jones E P, et al. 1998b. Anthropogenic carbon dioxide in the Arctic Ocean:inventory and sinks. Journal of Geophysical Research, 103(C12):27707-27716
    Anderson L G, Falck E, Jones E P, et al. 2004. Enhanced uptake of atmospheric CO2 during freezing of seawater:a field study in Storfjorden, Svalbard. Journal of Geophysical Research, 109(C6):C06004
    Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087):1408
    Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 105:1-16
    Bates N R. 2006. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. Journal of Geophysical Research, 111(C10):C10013
    Bates N R, Best M H P, Hansell D A. 2005. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3303-3323
    Bates N R, Cai Weijun, Mathis J T. 2011. The ocean carbon cycle in the western Arctic ocean:distributions and air-sea fluxes of carbon dioxide. Oceanography, 24(3):186-201
    Bates N R, Garley R, Frey K E, et al. 2014. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean:meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice. Biogeosciences, 11(23):6769-6789
    Bates N R, Mathis J T. 2009. The Arctic Ocean marine carbon cycle:evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences, 6(11):2433-2459
    Bates N R, Moran S B, Hansell D A, et al. 2006. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophysical Research Letters, 33(23):L23609
    Cai Weijun, Chen Liqi, Chen Baoshan, et al. 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science, 329(5991):556-559
    Cai Weijun, Dai Minhan, Wang Yongchen, et al. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 24(12):1301-1319
    Cai Weijun, Wang Yongchen. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4):657-668
    Chen Liqi, Gao Zhongyong. 2007. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 54(23-26):2619-2629
    Codispoti L A, Flagg C, Kelly V, et al. 2005. Hydrographic conditions during the 2002 SBI process experiments. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3199-3226
    Dickson A G, Sabine C L, Christian J R. 2007. Guide to Best Practices for Ocean CO2 Measurements. Sidney, British Columbia:North Pacific Marine Science Organization
    Fransson A, Chierici M, Anderson L G, et al. 2001. The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean:implication for carbon fluxes. Continental Shelf Research, 21(3):225-242
    Gao Zhongyong, Chen Liqi, Sun Heng, et al. 2012. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 81-84:46-52
    Geilfus N X, Carnat G, Papakyriakou T, et al. 2012. Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). Journal of Geophysical Research, 117(C2):C00G10
    Gosselin M, Levasseur M, Wheeler P A, et al. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 44(8):1623-1644
    Harada N. 2016. Review:potential catastrophic reduction of sea ice in the western Arctic Ocean:Its impact on biogeochemical cycles and marine ecosystems. Global and Planetary Change, 136:1-17
    Jutterström S, Anderson L G. 2010. Uptake of CO2 by the Arctic Ocean in a changing climate. Marine Chemistry, 122(1-4):96-104
    Kaltin S, Anderson L G. 2005. Uptake of atmospheric carbon dioxide in Arctic shelf seas:evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Marine Chemistry, 94(1-4):67-79
    Lu Peng, Li Zhijun, Cheng Bin, et al. 2010. Sea ice surface features in Arctic summer 2008:aerial observations. Remote Sensing of Environment, 114(4):693-699
    Lundberg L, Haugan P M. 1996. A Nordic Seas-Arctic Ocean carbon budget from volume flows and inorganic carbon data. Global Biogeochemical Cycles, 10(3):493-510
    Manizza M, Follows M J, Dutkiewicz S, et al. 2013. Changes in the Arctic Ocean CO2 sink (1996-2007):a regional model analysis. Global Biogeochemical Cycles, 27(4):1108-1118
    Mathis J T, Questel J M. 2013. Assessing seasonal changes in carbonate parameters across small spatial gradients in the Northeastern Chukchi Sea. Continental Shelf Research, 67:42-51
    Miller L A, Carnat G, Else B G T, et al. 2011. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. Journal of Geophysical Research, 116(C9), doi: 10.1029/2011JC007143
    Murata A, Takizawa T. 2003. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research, 23(8):753-776
    Nakaoka S I, Aoki S, Nakazawa T, et al. 2006. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea. Tellus B:Chemical and Physical Meteorology, 58(2):148-161
    Nitishinsky M, Anderson L G, Hölemann J A. 2007. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Continental Shelf Research, 27(10-11):1584-1599
    Omar A M, Johannessen T, Olsen A, et al. 2007. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea. Marine Chemistry, 104(3-4):203-213
    Pierrot D, Neill C, Sullivan K, et al. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 56(8-10):512-522
    Semiletov I P, Pipko I I, Repina I, et al. 2007. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean:pacific sector of the Arctic. Journal of Marine Systems, 66(1-4):204-226
    Sun Heng, Gao Zhongyong, Chen Liqi, et al. 2011. Distributions of dissolve inorganic carbon and total alkalinity in the western Arctic Ocean. Advances in Polar Science, 22(4):246-252
    Takahashi T, Olafsson J, Goddard J G, et al. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans:a comparative study. Global Biogeochemical Cycles, 7(4):843-878
    Wang Muyin, Overland J E. 2009. A sea ice free summer Arctic within 30 years. Geophysical Research Letters, 36(7):L07502
    Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5):7373-7382
    Weiss R F. 1974. Carbon dioxide in water and seawater:the solubility of a non-ideal gas. Marine Chemistry, 2(3):203-215
    Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea:moored measurements from autumn 1990-1991. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3116-3149
    Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. 2009. Aragonite undersaturation in the Arctic Ocean:effects of ocean acidification and sea ice melt. Science, 326(5956):1098-1100
    Zhang Jinlun, Ashjian C, Campbell R, et al. 2015. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 118:122-135
  • 加载中
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  44
  • PDF下载量:  949
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-31

目录

    /

    返回文章
    返回