Arctic sea ice in CMIP5 climate model projections and their seasonal variability

HUANG Fei ZHOU Xiao WANG Hong

黄菲, 周晓, 王宏. CMIP5气候模式模拟的北极海冰特征及其季节变化[J]. 海洋学报英文版, 2017, 36(8): 1-8. doi: 10.1007/s13131-017-1029-8
引用本文: 黄菲, 周晓, 王宏. CMIP5气候模式模拟的北极海冰特征及其季节变化[J]. 海洋学报英文版, 2017, 36(8): 1-8. doi: 10.1007/s13131-017-1029-8
HUANG Fei, ZHOU Xiao, WANG Hong. Arctic sea ice in CMIP5 climate model projections and their seasonal variability[J]. Acta Oceanologica Sinica, 2017, 36(8): 1-8. doi: 10.1007/s13131-017-1029-8
Citation: HUANG Fei, ZHOU Xiao, WANG Hong. Arctic sea ice in CMIP5 climate model projections and their seasonal variability[J]. Acta Oceanologica Sinica, 2017, 36(8): 1-8. doi: 10.1007/s13131-017-1029-8

CMIP5气候模式模拟的北极海冰特征及其季节变化

doi: 10.1007/s13131-017-1029-8
基金项目: The National Basic Research Program of China (973 Program) under contract No. 2015CB953904; the National Natural Science Foundation of China under contract No. 41575067.

Arctic sea ice in CMIP5 climate model projections and their seasonal variability

  • 摘要: 本文采用最新的CMIP5的模拟结果分析了1979-2100年北极海冰范围的季节变化特征,建立了一个新的用来比较31个CMIP5模式模拟和观测的北极海冰范围的判别方法。这个判别基于四个描述北极海冰特征的因子,即海冰范围的气候平均值、线性趋势、融冰期时长和年较差。这个方法非常客观,可以应用到类似的其他模式模拟结果的比较中去。基于上述标准挑选出6个对北极海冰变化特征模拟得比较好的模式(GFDL-CM3,CESM1-BGC,MPI-ESM-LR,ACCESS-1.0,HadGEM2-CC和HadGEM2-AO),并基于这六个模式结果的集合平均,我们发现北极海冰范围将在未来一百年继续减少,并在RCP4.5(RCP8.5)情景下于2065年(2053年)9月降到1百万平方千米以下(即无冰的北冰洋)。同时我们还研究了海冰范围的季节变化特征,发现到本世纪末北极的夏季融冰期在RCP4.5情景下将增加大约100天,在RCP8.5情景下则增加约200天,北极秋季的结冰期推迟和春季融冰期提前的非对称季节变化特征将在未来北极气候达到临界点时,即北极出现无冰的北冰洋时变得更加显著。海冰范围的季节变化振幅(季节性融冰范围)将在未来的30-40年里继续增大,表明夏季融冰越多,冬季结冰也越多,暗示了未来冬季或夏季可能会出现更多的极端天气气候事件的发生。
  • Barron E J. 1983. A warm, equable cretaceous:the nature of the problem. Earth Sci Rev, 19(4):305-338
    Bekryaev R V, Polyakov I V, Alexeev V A. 2010. Role of polar amplification in long-term surface air temperature variations and modern arctic warming. J Climate, 23(14):3888-3906
    Cavalieri D J, Gloersen P, Parkinson C L, et al. 1997. Observed hemispheric asymmetry in global sea ice changes. Science, 278(5340):1104-1106
    Cavalieri D J, Parkinson C L, Gloersen P, et al. 1999. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res, 104(C7):15803-15814
    Chapman W L, Walsh J E. 1993. Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteorol Soc, 74(1):33-48
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett, 35(1):L01703
    Easterling D R, Wehner M F. 2009. Is the climate warming or cooling?. Geophys Res Lett, 36(8):L08706
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Rev Lett, 39(6):L06801
    Francis J A, Vavrus S J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett, 10(1):014005
    Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Clim Dynam, 21(3-4):221-232
    Huang Fei, Di Hui, Hu Beibei, et al. 2014. Decadal regime shift of Arctic sea ice and corresponding changes of extreme low temperature. Clim Change Res Lett (in Chinese), 3(2):39-45
    Huang Fei, Shan Xiaolin, Fan Tingting. 2011. Decadal change of annual range for the Arctic sea ice in recent 30 years. In:Proceedings of the 21st International Offshore and Polar Engineering Conference. Maui, Hawaii, USA:International Society of Offshore and Polar Engineers, 978-985
    Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467):403-407
    Lenton T M. 2012. Arctic climate tipping points. AMBIO, 41(1):10-22
    Liu Jiping, Curry J, Wang Huijun, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci U S A, 109(11):4074-4079
    Liu Jiping, Song Mirong, Horton R M, et al. 2013. Reducing spread in climate model projections of a September ice-free Arctic. Proc Natl Acad Sci U S A, 110(31):12571-12576
    Lu Jianhua, Cai Ming. 2009. Seasonality of polar surface warming amplification in climate simulations. Geophys Res Lett, 36(16):L16704
    Manabe S, Wetherald R T. 1975. The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci, 32(1):3-15
    Masson-Delmotte V, Kageyama M, Braconnot P, et al. 2006. Past and future polar amplification of climate change:climate model intercomparisons and ice-core constraints. Climate Dyn, 26(5):513-529
    Niu Lu, Huang Fei, Zhou Xiao. 2015. Decadal regime shift of Arctic sea ice and associated decadal variability of Chinese freezing rain. Haiyang Xuebao (in Chinese), 37(11):105-117
    Parkinson C L, Cavalieri D J, Gloersen P, et al. 1999. Arctic sea ice extents, areas, and trends, 1978-1996. J Geophys Res, 104(C9):20837-20856
    Polyakov I V, Alekseev G V, Bekryaev R V, et al. 2002. Observationally based assessment of polar amplification of global warming. Geophys Res Lett, 29(18):25-1-25-4
    Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464(7293):1334-1337
    Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification:a research synthesis. Glob Planetary Change, 77(1-2):85-96
    Serreze M C, Francis J A. 2006. The Arctic amplification debate. Climate Change, 76(3-4):241-264
    Serreze M C, Holl M M, Stroeve J. 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science, 315(5818):1533-1536
    Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline:faster than forecast. Geophys Res Lett, 34(9):L09501
    Wadhams P. 2012. Arctic ice cover, ice thickness and tipping points. AMBIO, 41(1):23-33
    Wang Hong, Zhou Xiao, Huang Fei. 2015. Response of dominant mode for atmospheric circulation in northern hemisphere to the accelerated decline of Arctic sea ice:I. The Arctic Oscillation. Haiyang Xuebao (in Chinese), 37(11):57-67
    Zhu Chenyu, Huang Fei, Shi Yunhao, et al. 2014. Spatial-temporal patterns of the cold surge events in China in recent 50 years and its relationship with Arctic sea ice. Period Ocean Univ China, 44(12):12-20
  • 加载中
计量
  • 文章访问数:  1303
  • HTML全文浏览量:  56
  • PDF下载量:  1123
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-03

目录

    /

    返回文章
    返回