Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches

GUAN Jiantao WANG Weiji HU Yulong WANG Mosang TIAN Tao KONG Jie

官健涛, 王伟继, 胡玉龙, 王陌桑, 田涛, 孔杰. 利用限制性最大似然方法和贝叶斯方法估计大菱鲆生长性状的遗传参数。[J]. 海洋学报英文版, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y
引用本文: 官健涛, 王伟继, 胡玉龙, 王陌桑, 田涛, 孔杰. 利用限制性最大似然方法和贝叶斯方法估计大菱鲆生长性状的遗传参数。[J]. 海洋学报英文版, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y
GUAN Jiantao, WANG Weiji, HU Yulong, WANG Mosang, TIAN Tao, KONG Jie. Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches[J]. Acta Oceanologica Sinica, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y
Citation: GUAN Jiantao, WANG Weiji, HU Yulong, WANG Mosang, TIAN Tao, KONG Jie. Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches[J]. Acta Oceanologica Sinica, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y

利用限制性最大似然方法和贝叶斯方法估计大菱鲆生长性状的遗传参数。

doi: 10.1007/s13131-017-1034-y
基金项目: The Taishan Scholar Program for Seed Industry under contract No. ZR2014CQ001; the National High Technology Research and Development Program of China under contract No. 2012AA10A408-7.

Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches

  • 摘要: 利用限制性最大似然方法和贝叶斯方法分别估计大菱鲆养殖群体生长性状的遗传参数。利用39尾亲本进行人工授精育成28个后代家系,采集2462尾17月龄后代的收获体重。动物模型包括固定效应、协方差(孵化后110日龄的家系平均体重)、加性效应和残差。对于贝叶斯分析,根据后验条件分布的平均值和众数来估计遗传力和育种值。结果显示,对于加性效应,贝叶斯的后验均值(9320)是最高的,限制性最大似然方法的估计值(8088)次之,后验众数估计值最小(7849)。相应的三种遗传力估计值呈同样趋势。相应的三种育种值两两之间的皮尔逊相关系数均很高,最高的是后验均值和限制性最大似然方法的估计值(0.9969)。研究结果显示贝叶斯方法和限制性最大似然方法在遗传力和育种值估计方面差异小。本研究为大菱鲆的遗传参数估算提供另一种可行方法。
  • Ahlinder J, Sillanpää M J. 2013. Rapid Bayesian inference of heritability in animal models without convergence problems. Methods in Ecology and Evolution, 4(11):1037-1046
    Alijani S, Jasouri M, Pirany N, et al. 2012. Estimation of variance components for some production traits of Iranian Holstein dairy cattle using Bayesian and AI-REML methods. Pakistan Veterinary Journal, 32(4):562-566
    Cardellino R, Rovira J. 1987. Mejoramiento Genético Animal (in Spanish). Buenos Aires:Hemisferio Sur, 253
    de Magnabosco C U, Lôbo R B, Famula T R. 2000. Bayesian inference for genetic parameter estimation on growth traits for Nelore cattle in Brazil, using the Gibbs sampler. Journal of Animal Breeding and Genetics, 117(3):169-188
    de Villemereuil P, Gimenez O, Doligez B. 2013. Comparing parent-offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations:a simulation study for Gaussian and binary traits. Methods in Ecology and Evolution, 4(3):260-275
    Evans S, Langdon C. 2006. Direct and indirect responses to selection on individual body weight in the Pacific oyster (Crassostrea gigas). Aquaculture, 261(2):546-555
    Fishback A G, Danzmann R G, Ferguson M M, et al. 2002. Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture, 206(3-4):137-150
    Gara A B, Rekik B, Bouallègue M. 2006. Genetic parameters and evaluation of the Tunisian dairy cattle population for milk yield by Bayesian and BLUP analyses. Livestock Science, 100(3-4):142-149
    Geweke J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In:Bernardo J M, Berger J O, Dawid A P, et al., eds. Bayesian Statistics. Oxford:Oxford University Press, 169-193
    Gilks W R, Richardson S, Spiegelhalter D J. 1996. Markov Chain Monte Carlo in Practice. London:Chapman and Hall/CRC
    Gilmour A R, Gogel B J, Cullis B R, et al. 2009. ASReml User Guide Release 3.0. Hemel Hempstead, UK:VSN International Ltd
    Gjerde B, Røer J E, Lein I, et al. 1997. Heritability for body weight in farmed turbot. Aquaculture International, 5(2):175-178
    Hadfield J D. 2010. MCMC methods for multi-response generalized linear mixed models:the MCMCglmm R package. Journal of Statistical Software, 33(2):1-22
    Hadfield J. 2012. MCMCglmm CourseNotes. http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
    Henderson C R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2):423-447
    Jensen J, Wang C S, Sorensen D A, et al. 1994. Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects, using the Gibbs sampler. Acta Agriculturae Scandinavica Section A-Animal Science, 44(4):193-201
    Kapell D N R G, Ashworth C J, Knap P W, et al. 2011. Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livestock Science, 135(2-3):215-224
    Kokate L S, Gowane G R, Dige M S, et al. 2011. Bayesian statistics:concepts and applications in animal breeding-a review. Journal of Advanced Veterinary Research, 1(2):94-98
    Lei Jilin. 2002. Some problems and suggestion on industrialized fish farming along the north coast of our country. Modern Fisheries Information (in Chinese), 17(4):5-8
    Lei Jilin, Liu Xinfu. 1995. A primary study on culture of turbot, Scophthalmus maximus L. Modern Fisheries Information (in Chinese), 10(11):1-3
    Lei Jilin, Ma Aijun, Chen Chao, et al. 2005. The present status and sustainable development of turbot (Scophthalmus maximus L.) culture in China. Engineering Science (in Chinese), 7(5):30-34
    Lei Jilin, Ma Aijun, Liu Xinfu, et al. 2003. Study on the development of embryo, larval and juvenile of turbot Scophthalmus maximus L. Oceanologia et Limnologia Sinica (in Chinese), 34(1):9-18
    Lin E C, Berger P J. 2001. Comparison of (co)variance component estimates in control populations of red flour beetle (Tribolium castaneum) using restricted maximum likelihood and Gibbs sampling. Journal of Animal Breeding & Genetics, 118(1):21-36
    Liu Baosuo, Zhang Tianshi, Kong Jie, et al. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. Journal of Fisheries of China (in Chinese), 35(11):1601-1606
    Ma Aijun, Wang Xinan, Lei Jilin. 2009. Genetic parameterization for turbot Scophthalmus maximus:implication to breeding strategy. Oceanologia et Limnologia Sinica (in Chinese), 40(2):187-194
    Patterson H D, Thompson R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3):545-554
    Piepho H P, Ogutu J O, Schulz-Streeck T, et al. 2012. Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding. Crop Science, 52(3):1093-1104
    Quinton C D, McMillan I, Glebe B D. 2005. Development of an Atlantic salmon (Salmo salar) genetic improvement program:genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture, 247(1-4):211-217
    R Core Team. 2013. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
    Riebler A, Held L, Stephan W. 2008. Bayesian variable selection for detecting adaptive genomic differences among populations. Genetics, 178(3):1817-1829
    Sae-Lim P, Komen H, Kause A, et al. 2013. Enhancing selective breeding for growth, slaughter traits and overall survival in rainbow trout (Oncorhynchus mykiss). Aquaculture, 372-375:89-96
    Schenkel F S, Schaeffer L R, Boettcher P J. 2002. Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information. Genetics Selection Evolution, 34(1):41-59
    Shikano T. 2007. Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild. Aquaculture Research, 38(12):1248-1253
    Sorensen D A, Andersen S, Gianola D, et al. 1995. Bayesian inference in threshold models using Gibbs sampling. Genetics Selection Evolution, 27(3):229-249
    van Tassell C P, Casella G, Pollak E J. 1995. Effects of selection on estimates of variance components using Gibbs sampling and restricted maximum likelihood. Journal of Dairy Science, 78(8):678-692
    Waldmann P, Ericsson T. 2006. Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theoretical and Appllied Genetics, 112(8):1441-1451
    Walsh B. 2001. Quantitative genetics in the age of genomics. Theoretical Population Biology, 59(3):175-184
    Wang Hongxia, Chai Xueliang, Liu Baozhong. 2011. Estimation of genetic parameters for growth traits in cultured clam Meretrix meretrix (Bivalvia:Veneridae) using the Bayesian method based on Gibbs sampling. Aquaculture Research, 42(2):240-247
    Wang Xiaoxue, Ross K E, Saillant E, et al. 2006. Quantitative genetics and heritability of growth-related traits in hybrid striped bass (Morone chrysops ♀×Morone saxatilis ♂). Aquaculture, 261(2):535-545
    Wang C S, Rutledge J J, Gianola D. 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26(2):91-115
    Zhang Qingwen, Kong Jie, Luan Sheng, et al. 2008. Estimation of genetic parameters for three economic traits in 25 d turbot fry. Marine Fisheries Research (in Chinese), 29(3):53-56.
  • 加载中
计量
  • 文章访问数:  799
  • HTML全文浏览量:  65
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-21
  • 修回日期:  2015-09-14

目录

    /

    返回文章
    返回