Derivation of the thermal characteristics of mesoscale eddies

CHEN Xuan PAN Jing ZHENG Chongwei ZHANG Xi HE Ming

陈璇, 潘静, 郑崇伟, 张羲, 何明. 中尺度涡冷暖特征的推导[J]. 海洋学报英文版, 2017, 36(3): 8-13. doi: 10.1007/s13131-017-1036-9
引用本文: 陈璇, 潘静, 郑崇伟, 张羲, 何明. 中尺度涡冷暖特征的推导[J]. 海洋学报英文版, 2017, 36(3): 8-13. doi: 10.1007/s13131-017-1036-9
CHEN Xuan, PAN Jing, ZHENG Chongwei, ZHANG Xi, HE Ming. Derivation of the thermal characteristics of mesoscale eddies[J]. Acta Oceanologica Sinica, 2017, 36(3): 8-13. doi: 10.1007/s13131-017-1036-9
Citation: CHEN Xuan, PAN Jing, ZHENG Chongwei, ZHANG Xi, HE Ming. Derivation of the thermal characteristics of mesoscale eddies[J]. Acta Oceanologica Sinica, 2017, 36(3): 8-13. doi: 10.1007/s13131-017-1036-9

中尺度涡冷暖特征的推导

doi: 10.1007/s13131-017-1036-9
基金项目: The Junior Fellowships for CAST Advanced Innovation Think-tank Program "Evaluation of the Oceanic Dynamic Resources of the 21st Century Maritime Silk Road and Its Strategic Points" under contract No. DXB-ZKQN-2016-019; the National Key Basic Research Development Program Astronomy and Earth Factor on the Impact of Climate Change under contract No. 2013CB956200; the National Natural Science Foundation of China under contract No. 41275086; the Natural Science Foundation of Shandong Province under contract No. ZR2016DL09.

Derivation of the thermal characteristics of mesoscale eddies

  • 摘要: 为了从理论上解释中尺度涡旋冷暖性质与涡旋旋转方向的关系,本文基于中尺度涡的几何特征,做出如下假设:中尺度涡具有对称的几何形态,涡旋中海洋要素沿径向具有线性化变化的特征。从原始方程组出发,利用柱坐标系和上述假设条件,略去耗散力,推导出了中尺度涡的一些冷暖特征,论证气旋式中尺度涡对应冷涡和反气旋式中尺度涡对应暖涡的涡旋冷暖特征与部分涡旋的观测不符的现象。结果表明,中心对称的形式可以作为对中尺度涡的几何特征的一个理想的形态近似,在考虑上述假设条件的理想环境下,柱坐标系在研究中尺度涡的几何性质上具有一定的优势。
  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea:mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research:Oceans, 116(C6):C06018
    Dong Changming, Mavor T, Nencioli F, et al. 2009. An oceanic cyclonic eddy on the lee side of Lanai Island, Hawai'i. Journal of Geophysical Research:Oceans, 114(C10):C10008
    Ebuchi N, Hanawa K. 2001. Trajectory of mesoscale eddies in the Kuroshio recirculation region. Journal of Oceanography, 57(4):471-480
    Glorioso P D, Piola A R, Leben R R. 2005. Mesoscale eddies in the subantarctic front-Southwest Atlantic. Scientia Marina, 69(S2):7-15
    Guan Bingxian, Yuan Yaochu. 2006. Overview of studies on some eddies in the China seas and their adjacent seas:I. The South China Sea and the region east of Taiwan. Haiyang Xuebao (in Chinese), 28(3):1-16
    Hamilton P, Berger T J, Johnson W. 2002. On the structure and motions of cyclones in the northern Gulf of Mexico. Journal of Geophysical Research:Oceans, 107(C12):1-1-1-18
    Hu Po, Hou Yijun, Le Kentang, et al. 2007. Study advances on the Kuroshio in the East China Sea and currents in the region east of Ryukyu Islands. Studia Marina Sinica (in Chinese), (48):28-34
    Hwang C, Wu C R, Kao R. 2004. Topex/Poseidon observations of mesoscale eddies over the subtropical countercurrent:kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. Journal of Geophysical Research:Oceans, 109(C8):C08013
    Johannessen J A, Sandven S, Lygre K, et al. 1989. Three-dimensional structure of mesoscale eddies in the Norwegian coastal current. Journal of Physical Oceanography, 19(1):3-19
    Lin Pengfei. 2005. Statistical analyses on mesoscale eddies in the South China Sea and the Northwest Pacific (in Chinese)[dissertation]. Beijing:The Institute of Oceanology, Chinese Academy of Sciences
    Lou Ruyun, Yuan Yaochu. 2004. The circulation on the both sides of the Ryukyu Islands during the summer of 1995 and 1996. Haiyang Xuebao (in Chinese), 26(3):16-27
    Pearce A F, Griffiths R W. 1991. The mesoscale structure of the Leeuwin Current:a comparison of laboratory models and satellite imagery. Journal of Geophysical Research:Oceans, 96(C9):16739-16757
    Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific:a key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3):675-688
    Shi Jiuxin, Zhao Jinping, Jiao Yutian, et al. 2008. Structure of a subsurface eddy in Canadian basin of Arctic Ocean. Chinese Journal of Polar Research (in Chinese), 20(1):1-13
    Souza J M A C, de Boyer Montégut C, Le Traon P Y. 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Science, 7(3):317-334
    Stewart R H. 2009. Introduction to Physical Oceanography. Florida:Orange Grove Texts Plus, 108, 171-172
    Su Jilan. 2005. Overview of the South China Sea circulation and its dynamics. Haiyang Xuebao (in Chinese), 27(6):1-8
    Thorpe S A. 2007. An Introduction to Ocean Turbulence. Cambridge:Cambridge University Press, 208
    Wang Dongxiao, Chen Ju, Chen Rongyu, et al. 2004a. Hydrographic and circulation characteristics in middle and southern South China Sea in summer, 2000. Oceanologia et Limnologia Sinica (in Chinese), 35(2):97-109
    Wang Guihua, Su Jilan, Qi Yiquan. 2004b. Advances in studying mesoscale eddies in South China Sea. Advances in Earth Science (in Chinese), 20(8):882-886
    Xiu Shumeng, Zhen Quan'an, Sun Xiangping. 2002. Shelf upwelling induced by mesoscale eddy. Journal of Hydrodynamics (in Chinese), 17(1):61-68
    Xu Lixiao, Xie Shangping, McClean J L, et al. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. Journal of Geophysical Research:Oceans, 119(8):4867-4886
    Yuan Yaochu, Yang Chenghao, Wang Zhanggui. 2006. Variability of the Kuroshio in the East China Sea and the currents east of Ryukyu Islands:II. Variability of the currents and the meso-scale eddies in the region southeast of Okinawa Island. Haiyang Xuebao (in Chinese), 28(3):17-28
    Zheng Chongwei, Li Chongyin, Pan Jing, et al. 2016. An overview of global ocean wind energy resource evaluations. Renewable and Sustainable Energy Reviews, 53:1240-1251
    Zheng Chongwei, Pan Jing. 2014. Assessment of the global ocean wind energy resource. Renewable and Sustainable Energy Reviews, 33:382-391
    Zheng Chongwei, Shao Longtan, Shi Wenli, et al. 2014. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanologica Sinica, 33(1):92-101
    Zheng Chongwei, Su Qin, Liu Tiejun. 2013a. Wave energy resources assessment and dominant area evaluation in the China sea from 1988 to 2010. Haiyang Xuebao (in Chinese), 35(3):104-111
    Zheng Chongwei, Zhou Lin, Huang Chaofan, et al. 2013b. The long-term trend of the sea surface wind speed and the wave height (wind wave, swell, mixed wave) in global ocean during the last 44 a. Acta Oceanologica Sinica, 32(10):1-4
  • 加载中
计量
  • 文章访问数:  982
  • HTML全文浏览量:  62
  • PDF下载量:  1170
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-03-29

目录

    /

    返回文章
    返回