A seasonal grade division of the global offshore wind energy resource

ZHENG Chongwei LI Chongyin GAO Chengzhi LIU Mingyang

郑崇伟, 李崇银, 高成志, 刘明洋. 全球海域风能资源在不同季节的等级区划[J]. 海洋学报英文版, 2017, 36(3): 109-114. doi: 10.1007/s13131-017-1043-x
引用本文: 郑崇伟, 李崇银, 高成志, 刘明洋. 全球海域风能资源在不同季节的等级区划[J]. 海洋学报英文版, 2017, 36(3): 109-114. doi: 10.1007/s13131-017-1043-x
ZHENG Chongwei, LI Chongyin, GAO Chengzhi, LIU Mingyang. A seasonal grade division of the global offshore wind energy resource[J]. Acta Oceanologica Sinica, 2017, 36(3): 109-114. doi: 10.1007/s13131-017-1043-x
Citation: ZHENG Chongwei, LI Chongyin, GAO Chengzhi, LIU Mingyang. A seasonal grade division of the global offshore wind energy resource[J]. Acta Oceanologica Sinica, 2017, 36(3): 109-114. doi: 10.1007/s13131-017-1043-x

全球海域风能资源在不同季节的等级区划

doi: 10.1007/s13131-017-1043-x
基金项目: The Junior Fellowships for CAST Advanced Innovation Think-tank Program under contract No. DXB-ZKQN-2016-019; the National Key Basic Research and Development Program of China under contract No. 2013CB956200; the National Natural Science Foundation of China under contract No. 41275086; the Academic Program of Dalian Naval Academy under contract No. 2016-01; the Natural Science Foundation of Shandong Province under contract No. ZR2016DL09.

A seasonal grade division of the global offshore wind energy resource

  • 摘要: 在资源危机愈演愈烈的时代背景下,积极开发利用可再生能源将会对缓解能源危机、环境危机做出有益贡献,同时也必将成为“21世纪海上丝绸之路”建设的新亮点。利用来自欧洲中期天气预报中心(ECMWF)的ERA-Interim风场资料,本文制作了全球海域风能资源的年等级区划、季节等级区划。结果表明:从多年平均状态来看,全球海上风能资源的潜力巨大,南北半球西风带海域的风能等级为7级(最优等级);中低纬大部分海域也比较乐观,多在4级以上;北冰洋的风能资源为4级,比传统估值乐观。北半球西风带7级风能资源的范围具有较大的季节性差异:1月最广,4月和10月次之,7月最小;南半球西风带的季节性差异则相对较小:7月相对最大,其余月份略小于7月。7月,阿拉伯海和孟加拉湾的风能资源都属于7级,明显比其余代表月丰富。4月和10月,北印度洋的风能资源整体贫乏,大部分区域为1级(最贫乏)。
  • Adams A S, Keith D W. 2013. Are global wind power resource estimates overstated?. Environmental Research Letters, 8(1):015021
    Archer C L, Jacobson M Z. 2005. Evaluation of global wind power. Journal of Geophysical Research, 110(D12):D12110
    Capps S B, Zender C S. 2010. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. Journal of Geophysical Research, 115(D9):D09101
    Carvalho D, Rocha A, Gómez-Gesteira M, et al. 2014a. WRF wind simulation and wind energy production estimates forced by different reanalyses:comparison with observed data for Portugal. Applied Energy, 117:116-126
    Carvalho D, Rocha A, Gómez-Gesteira M, et al. 2014b. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sensing of Environment, 152:480-492
    Chadee X T, Clarke R M. 2014. Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renewable and Sustainable Energy Reviews, 30:45-58
    Doubrawa P, Barthelmie R J, Pryor S C, et al. 2015. Satellite winds as a tool for offshore wind resource assessment:The great lakes wind atlas. Remote Sensing of Environment, 168:349-359
    Dvorak M J, Archer C L, Jacobson M Z. 2010. California offshore wind energy potential. Renewable Energy, 35(6):1244-1254
    ECMWF. 2016. ERA-interim wind data. http://www.ecmwf.int.[2016-01-01]
    Elliott D L, Holladay C G, Barchet W R, et al. 1986. Wind Energy Resource Atlas of the United States. DOE/CH 10093-4. Colorado:Pacific Northwest Laboratory, 126
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2004. GB/T 18710-2002 Methodology of Wind Energy Resource Assessment for Wind Farm (in Chinese). Beijing:China Standard Press, 124
    Hou Fang, Bao Xianwen, Li Benxia, et al. 2015. The assessment of extactable tidal energy and the effect of tidal energy turbine deployment on the hydrodynamics in Zhoushan. Acta Oceanologica Sinica, 34(5):86-91
    Jung S, Vanli O A, Kwon S D. 2013. Wind energy potential assessment considering the uncertainties due to limited data. Applied Energy, 102:1492-1503
    Kent E C, Fangohr S, Berry D I. 2013. A comparative assessment of monthly mean wind speed products over the global ocean. International Journal of Climatology, 33(11):2520-2541
    Kozai K, Ohsawa T, Takahashi R, et al. 2012. Evaluation method for offshore wind energy resources using scatterometer and Weibull parameters. Journal of Energy and Power Engineering, 6(11):1772-1778
    Liu W T, Tang Wenqing, Xie Xiaosu. 2008. Wind power distribution over the ocean. Geophysical Research Letters, 35(13):L13808
    NASA. 2008. Global ocean wind energy potential. http://earthobservatory.nasa.gov/IOTD/view.php?id=8916[2008-07-16]
    NREL. 2005a. File: QuikSCAT-annual wind power density at 10 m. http://en.openei.org/w/index.php?title=File:QuikSCAT-_Annual_Wind_Power_Density_at_10m.pdf&page=1[2011-06-15]
    NREL. 2005b. Classes of wind power density at 10 m and 50 m. http://www.nrel.gov/rredc/[2005-07-10]
    Wan Yong, Zhang Jie, Meng Junmin, et al. 2015. Exploitable wave energy assessment based on ERA-Interim reanalysis data-A case study in the East China Sea and the South China Sea. Acta Oceanologica Sinica, 34(9):143-155
    Youm I, Sarr J, Sall M, et al. 2005. Analysis of wind data and wind energy potential along the northern coast of Senegal. Revue des Energies Renouvelables, 8(2):95-108
    Zhang Yuming, Wu Kejian, Zhang Xiaoshuang, et al. 2013. Improving the estimate of wind energy input into the Ekman layer within the Antarctic Circumpolar Current. Acta Oceanologica Sinica, 32(3):19-27
    Zheng Chongwei, Li Chongyin. 2015. Variation of the wave energy and significant wave height in the China sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43:381-387
    Zheng Chongwei, Li Chongyin, Pan Jing, et al. 2016a. An overview of global ocean wind energy resources evaluation. Renewable and Sustainable Energy Reviews, 53:1240-1251
    Zheng Chongwei, Li Chongyin, Yang Yan, et al. 2016b. Analysis of wind energy resource in the Pakistan's Gwadar Port. Journal of Xiamen University:Natural Science in Chinese, 55(2):210-215
    Zheng Chongwei, Lin Gang, Shao Longtan. 2013. Frequency of rough sea and its long-term trend analysis in the China sea from 1988 to 2010. Journal of Xiamen University:Natural Science in Chinese, 52(3):395-399
    Zheng Chongwei, Pan Jing. 2014. Assessment of the global ocean wind energy resource. Renewable and Sustainable Energy Reviews, 33:382-391
    Zheng Chongwei, Pan Jing, Huang Gang. 2014a. Forecasting of the China sea ditching probability using WW3 wave model. Journal of Beijing University of Aeronautics and Astronautics (in Chinese), 40(3):314-320
    Zheng Chongwei, Shao Longtan, Shi Wenli, et al. 2014b. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanologica Sinica, 33(1):92-101
    Zheng Chongwei, Zhuang Hui, Li Xin, et al. 2012. Wind energy and wave energy resources assessment in the East China Sea and South China Sea. Science China:Technological Sciences, 55(1):163-173
  • 加载中
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  44
  • PDF下载量:  1511
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-13
  • 修回日期:  2016-05-16

目录

    /

    返回文章
    返回