Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis

ZHANG Ye LI Chaolun YANG Guang WANG Yanqing TAO Zhencheng ZHANG Yongshan WANG Aijun

张晔, 李超伦, 杨光, 王延清, 陶振铖, 张永山, 王爱军. 基于稳定性同位素的普里兹湾南极大磷虾不同发育阶段食性转变分析[J]. 海洋学报英文版, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4
引用本文: 张晔, 李超伦, 杨光, 王延清, 陶振铖, 张永山, 王爱军. 基于稳定性同位素的普里兹湾南极大磷虾不同发育阶段食性转变分析[J]. 海洋学报英文版, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4
ZHANG Ye, LI Chaolun, YANG Guang, WANG Yanqing, TAO Zhencheng, ZHANG Yongshan, WANG Aijun. Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis[J]. Acta Oceanologica Sinica, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4
Citation: ZHANG Ye, LI Chaolun, YANG Guang, WANG Yanqing, TAO Zhencheng, ZHANG Yongshan, WANG Aijun. Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis[J]. Acta Oceanologica Sinica, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4

基于稳定性同位素的普里兹湾南极大磷虾不同发育阶段食性转变分析

doi: 10.1007/s13131-017-1049-4
基金项目: Chinese Polar Environment Comprehensive Investigation & Assessment Programmes under contract No. CHINARE2016-01-05; the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology under contract No. 2015ASKJ01; the National Natural Science Foundation of China under contract No. 41206180.

Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis

  • 摘要: 作为南大洋最常见和优势的生物物种,南极大磷虾(Euphausia superba)在食物网结构和能量流动过程中扮演着重要的角色。本文研究了2012/2013年夏季普里兹湾南极大磷虾的摄食,并用稳定性同位素方法分析了其食性的转变。大磷虾成体的氮稳定性同位素值((2.78±0.58)‰)高于未成体((1.69±0.70)‰),而成体的碳稳定性同位素值(-(28.26±1.08)‰)则稍稍低于未成体的值(-(27.48±1.35)‰)。用0m、25m、50m水深的颗粒有机物(POM)合起来代表大磷虾的植物性饵料。植物性饵料和中型浮游动物是南极大磷虾在普里兹湾的夏季最重要的食物来源。POM(0/25/50 m)对未成体和成体大磷虾的饵料贡献分别为56%-69%和26%-34%。而中型浮游动物占据未成体和成体大磷虾的饵料比例则分别为13%-34%和58%-71%。这些结果表示,随着大磷虾的生长,其饵料由以较低营养级浮游植物为主的POM向以中型浮游动物为主的高营养级类群转变。这种“饵料组成随生长发育发生转换”的营养策略有利于降低南极大磷虾未成体与成体之间的饵料竞争,帮助他们更好地适应南大洋海洋生态系统。
  • Alexander S A, Hobson K A, Gratto-Trevor C L. 1996. Conventional and isotopic determinations of shorebird diets at an inland stopover: the importance of invertebrates and Potamogeton pectinatus tubers. Canadian Journal of Zoology, 74(6): 1057-1068
    Atkinson A, Meyer B, Stubing D. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: Ⅱ. Juveniles and adults. Limnology and Oceanography, 47(4): 953-966
    Atkinson A, Siegel V, Pakhomov E. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013): 100-103
    Atkinson A, Snÿder R. 1997. Krill-copepod interactions at South Georgia, Antarctica: I. omnivory by Euphausia superba. Marine Ecology Progress Series, 160: 63-76
    Atkinson A, Ward P, Hill A. 1999. Krill-copepod interactions at South Georgia, Antarctica: Ⅱ. Euphausia superba as a major control on copepod abundance. Marine Ecology Progress Series, 176: 63-79
    Båmstedt U, Gifford D J, Irigoien X, et al. 2000. Feeding. In: Harris R, Wiebe P, Lenz J, et al., eds. ICES Zooplankton Methodology Manual. London: Academic Press
    Benstead J P, March J G, Fry B. 2006. Testing IsoSource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology, 87(2): 326-333
    Boyd C M, Heyraud M, Boyd C N. 1984. Feeding of the Antarctic krill Euphausia superba. Journal of Crustacean Biology, 4(S1): 123-141
    Brodie C R, Casford J S L, Lloyd J M. 2011. Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Science Reviews, 30(21-22): 3076-3087
    Cabana G, Rasmussen J B. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America, 93(20): 10844-10847
    Cherel Y, Ducatez S, Fontaine C. 2008. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress Series, 370: 239-247
    Daly K, Macaulay M C. 1991. Influence of physical and biological mesoscale dynamics on the seasonal distribution and behavior of Euphausia superba in the Antarctic marginal ice zone. Marine Ecology Progress Series, 79(1): 37-66
    Daly K L. 1990. Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnology and Oceanography, 35(7): 1564-1576
    Daly K L. 2004. Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17-19): 2139-2168
    DeNiro M J, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300): 261-263
    Everson I. 2000. Krill: Biology, Ecology and Fisheries. Oxford Malden, MA: Blackwell Science, 1-372
    Fischer G. 1991. Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Marine Chemistry, 35(1-4): 581-596
    Gurney L J, Froneman P W, Pakhomov E A. 2001. Trophic positions of three euphausiid species from the Prince Edward Islands (Southern Ocean): implications for the pelagic food web structure. Marine Ecology Progress Series, 217: 167-174
    Haberman K L, Quetin L B, Ross R M. 2003a. Diet of the Antarctic krill (Euphausia superba Dana): I. Comparisons of grazing on Phaeocystis antarctica (Karsten) and Thalassiosira antarctica (Comber). Journal of Experimental Marine Biology and Ecology, 283(1-2): 79-95
    Haberman K L, Ross R M, Quetin L B. 2003b. Diet of the Antarctic krill (Euphausia superba Dana): Ⅱ. Selective grazing in mixed phytoplankton assemblages. Journal of Experimental Marine Biology and Ecology, 283(1-2): 97-113
    Hansson L A, Tranvik L J. 2003. Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biology, 26(12): 783-788
    Hellmann C, Wissel B, Winkelmann C. 2013. Omnivores as seasonally important predators in a stream food web. Freshwater Science, 32(2): 548-562
    Hodum P J, Hobson K A. 2000. Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (δ15N and δ13C) analyses. Marine Ecology Progress Series, 198: 273-281
    Hopkins T L, Torres J J. 1989. Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Research Part I. Oceanographic Research Papers, 36(4): 543-560
    Hosie G W. 1991. Distribution and abundance of euphausiid larvae in the Prydz Bay region, Antarctica. Antarctic Science, 3(2): 167-180
    Hosie G W, Cochran T G. 1994. Mesoscale distribution patterns of macrozooplankton communities in Prydz Bay, Antarctica-January to February 1991. Marine Ecology Progress Series, 106(1-2): 21-39
    Hosie G W, Ikeda T, Stolp M. 1988. Distribution, abundance and population structure of the Antarctic krill (Euphausia superba Dana) in the Prydz Bay region, Antarctica. Polar Biology, 8(3): 213-224
    Kiljunen M, Grey J, Sinisalo T. 2006. A revised model for lipid-normalizing delta δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology, 43(6): 1213-1222
    Kopczyńska E E, Goeyens L, Semeneh M. 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. Journal of Plankton Research, 17(4): 685-707
    Legendre L, Ackley S F, Dieckmann G S. 1992. Ecology of sea ice biota. Polar Biology, 12(3-4): 429-444
    Lesage V, Hammill M O, Kovacs K M. 2001. Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Marine Ecology Progress Series, 210: 203-221
    Maciejewska K. 1993. Feeding of antarctic krill Euphausia superba in Weddell sea. Polish Polar Research, 14(1): 43-54
    McClatchie S, Boyd C M. 1983. Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences, 40(7): 955-967
    McConnaughey T, McRoy C P. 1979. Food-web structure and the fractionation of carbon isotopes in the bering sea. Marine Biology, 53(3): 257-262
    Meyer B, Atkinson A, Stöbing D. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: I. Furcilia Ⅲ larvae. Limnology and Oceanography, 47(4): 943-952
    Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48(5): 1135-1140
    Miquel J C. 1991. Distribution and abundance of post-larval krill (Euphausia superba Dana) near Prydz Bay in summer with reference to environmental conditions. Antarctic Science, 3(3): 279-292
    Neill C, Cornwell J C. 1992. Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands, 12(3): 217-224
    Nicol S. 2006. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience, 56(2): 111-120
    Nordhausen W. 1994. Winter abundance and distritubion of Euphausia superba, E. crystallorophias, and Thysanoessa macrura in Gerlache Strait amd Crystal Sound, Antarctica. Marine Ecology Progress Series, 109(2-3): 131-142
    Norkko A, Thrush S T, Cummings V J. 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology, 88(11): 2810-2820
    Ogle K, Tucker C, Cable J M. 2014. Beyond simple linear mixing models: process-based isotope partitioning of ecological processes. Ecological Applications, 24(1): 181-195
    Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Marine Ecology Progress Series, 429: 103-109
    Perissinotto R, Gurney L, Pakhomov E A. 2000. Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Marine Biology, 136(1): 129-135
    Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2): 261-269
    Phillips D L, Newsome S D, Gregg J W. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144(4): 520-527
    Polito M J, Reiss C S, Trivelpiece W Z. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Marine Biology, 160(6): 1311-1323
    Ponomareva L A. 1954. Euphausiids of the Sea of Japan feeding on copepods. Dokl Akad Nauk SSSR, 98: 153-154
    Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3): 703-718
    Price H J, Boyd K R, Boyd C M. 1988. Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Marine Biology, 97(1): 67-77
    Pu Shuzhen, Dong Zhaoqian. 2003. Progress in physical oceanographic studies of Prydz Bay and its adjacent oceanic area. Chinese Journal of Polar Research (in Chinese), 15(1): 53-64
    Quetin L B, Ross R M. 1991. Behavioral and physiological characteristics of the Antarctic krill, Euphausia superba. American Zoologist, 31(1): 49-63
    Quetin L B, Ross R M. 2009. Life under Antarctic pack ice: a krill perspective. In: Krupnik I, Lang M A, Miller S E, eds. Smithsonian at the Poles: Contributions to International Polar Year Science. Washington, DC: Smithsonian Institution Scholarly Press, doi: 10.5479/si.097884601X.21
    Rau G H, Hopkins T L, Torres J J. 1991a. 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Marine Ecology Progress Series, 77(1): 1-6
    Rau G H, Sullivan C W, Gordon L I. 1991b. δ13C and δ15N variations in Weddell Sea particulate organic matter. Marine Chemistry, 35(1-4): 355-369
    Rau G H, Takahashi T, Des Marais D J. 1991c. Particulate organic matter δ13C variations across the Drake Passage. Journal of Geophysical Research, 96(C8): 15131-15135
    Ross R M, Quetin L B, Newberger T. 2004. Growth and behavior of larval krill (Euphausia superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17-19): 2169-2184
    Schmidt K, Atkinson A, Petzke K J. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5): 2409-2427
    Schmidt K, Atkinson A, Pond D W. 2014. Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnology and Oceanography, 59(1): 17-36
    Schmidt K, Atkinson A, Steigenberger S. 2011. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnology and Oceanography, 56(4): 1411-1428
    Schmidt K, Atkinson A, Stübing D. 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnology and Oceanography, 48(1): 277-289
    Siegel V, Bergström B, Strömberg J O. 1990. Distribution, size frequencies and maturity stages of krill, Euphausia superba, in relation to sea-ice in the northern Weddell Sea. Polar Biology, 10(7): 549-557
    Smith N R, Dong Zhaoqian, Kerry K R. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Research Part I. Oceanographic Research Papers, 31(9): 1121-1147
    Søreide J E, Hop H, Carroll M L. 2006. Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography, 71(1): 59-87
    Stowasser G, Atkinson A, McGill R A R. 2012. Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 59-60: 208-221
    Suh H L, Choi S D. 1998. Comparative morphology of the feeding basket of five species of Euphausia (Crustacea, Euphausiacea) in the western North Pacific, with some ecological considerations. Hydrobiologia, 385(1-3): 107-112
    Suh H L, Nemoto T. 1987. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proceedings of the NIPR Symposium on Polar Biology, 1: 72-83
    Taki K, Yabuki T, Noiri Y. 2008. Horizontal and vertical distribution and demography of euphausiids in the Ross Sea and its adjacent waters in 2004/2005. Polar Biology, 31(11): 1343-1356
    Thomas P G, Green K. 1988. Distribution of Euphausia crystallorophias within Prydz Bay and its importance to the inshore marine ecosystem. Polar Biology, 8(5): 327-331
    Tierney M, Southwe C, Emmerson L M. 2008. Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae. Marine Ecology Progress Series, 355: 297-307
    Vander Zanden M J, Rasmussen J B. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology, 80(4): 1395-1404
    Wada E, Terazaki M, Kabaya Y. 1987. 15N and 13C abundances in the Antarctic ocean with emphasis on biogeochemical structure of the food web. Deep Sea Research Part I. Oceanographic Research Papers, 34(5-6): 829-841
    Yin Xijie, Li Yunhai, Qiao Lei. 2014. Distribution of particulate organic carbon (POC) and δ13Cpoc in surface waters in summer in Prydz Bay, Antarctica. Chinese Journal of Polar Research (in Chinese), 26(1): 159-166
  • 加载中
计量
  • 文章访问数:  1066
  • HTML全文浏览量:  71
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20

目录

    /

    返回文章
    返回