A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California

ZHANG Xiao YE Ying KAN Yating HUANG Yuanfeng JIA Jianjun ZHAO Yue CHEN Chen-Tung Arthur QIN Huawei

张潇, 叶瑛, 阚雅婷, 黄元凤, 贾健君, 赵玥, 陈镇东, 秦华伟. 一种新型电镀法制备的Ir/Ir(OH)x pH电极及其在加州纽波特港海域的应用研究[J]. 海洋学报英文版, 2017, 36(5): 99-104. doi: 10.1007/s13131-017-1064-5
引用本文: 张潇, 叶瑛, 阚雅婷, 黄元凤, 贾健君, 赵玥, 陈镇东, 秦华伟. 一种新型电镀法制备的Ir/Ir(OH)x pH电极及其在加州纽波特港海域的应用研究[J]. 海洋学报英文版, 2017, 36(5): 99-104. doi: 10.1007/s13131-017-1064-5
ZHANG Xiao, YE Ying, KAN Yating, HUANG Yuanfeng, JIA Jianjun, ZHAO Yue, CHEN Chen-Tung Arthur, QIN Huawei. A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California[J]. Acta Oceanologica Sinica, 2017, 36(5): 99-104. doi: 10.1007/s13131-017-1064-5
Citation: ZHANG Xiao, YE Ying, KAN Yating, HUANG Yuanfeng, JIA Jianjun, ZHAO Yue, CHEN Chen-Tung Arthur, QIN Huawei. A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California[J]. Acta Oceanologica Sinica, 2017, 36(5): 99-104. doi: 10.1007/s13131-017-1064-5

一种新型电镀法制备的Ir/Ir(OH)x pH电极及其在加州纽波特港海域的应用研究

doi: 10.1007/s13131-017-1064-5
基金项目: The Key Laboratory Project of State Oceanic Administration for Marine Ecosystem and Biogeochemistry of China under contract No. 529101-X21601; the Foundation from Wendy Schmidt Ocean Health XPRIZE and the Southern California Coastal Water Research Project.

A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California

  • 摘要: 大气中CO2含量逐年上升,海洋酸化已经成为一个世界性难题。它对生态环境及人类的发展都产生着不可忽视的影响。因此,我们需要一个高精度传感器来监测海水pH值。本研究中传感器使用Ir/Ir(OH)x电极,制备时以直径为0.25mm的铱丝为基材,在室温条件下通过电化学法在其上原位合成Ir(OH)x膜。SEM图像显示铱丝表面包覆有纳米级颗粒的膜。该电极具有良好的能斯特斜率,并具有响应快速、稳定性与重现性好、寿命长的优点。将四支该方法制备的pH电极与一支参比电极集成于自制化学传感器,在加州纽波特港进行海试作业。结果显示,该传感器测得海水pH值与Sea-Bird 911 plus CTD测得数据十分接近,且在传感器下投和上拉过程中,数据吻合度更高。因此,自制海洋酸化传感器具有更高的精度和准确度。
  • Ardizzone S, Carugati A, Trasatti S. 1981. Properties of thermally prepared iridium dioxide electrodes. J Electroanal Chem Interfacial Electrochem, 126(1-3):287-292
    Bates R G, Erickson W P. 1986. Thermodynamics of the dissociation of 2-aminopyridinium ion in synthetic seawater and a standard for pH in marine systems. J Solution Chem, 15(11):891-901
    Baur J E, Spaine T W. 1998. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(Ⅲ) oxide. J Electroanal Chem, 443(2):208-216
    Burke L D, Whelan D P. 1984. A voltammetric investigation of the charge storage reactions of hydrous iridium oxide layers. J Electroanal Chem Interfacial Electrochem, 162(1-2):121-141
    Chen Dongchu, Li Wenfang, Huang Jinying. 2007. Preparation of a tungsten oxide pH electrochemical sensor based on solid Ag/AgCl reference electrode. Chin J Sens Actuators, 20(7):1483-1487
    Cheng Changming, Tian Xianqing, Guo Yong, et al. 2011. Large enhancement of sensitivity and a wider working range of glass pH electrode with amperometric and potentiometric responses. Electrochim Acta, 56(27):9883-9886
    Da Silva G M, Lemos S G, Pocrifka L A, et al. 2008. Development of low-cost metal oxide pH electrodes based on the polymeric precursor method. Anal Chim Acta, 616(1):36-41
    Das S, Mangwani N. 2015. Ocean acidification and marine microorganisms:responses and consequences. Oceanologia, 57(4):349-361
    Dickson A G. 1993a. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Res:Part I. Oceanogr Res Pap, 40(1):107-118
    Dickson A G. 1993b. The measurement of sea water pH. Mar Chem, 44(2-4):131-142
    Ding Qian, Pan Yiwen, Huang Yuanfeng, et al. 2015. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan. Cont Shelf Res, 111:262-267
    Feely R A, Sabine C L, Lee K, et al. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682):362-366
    Fog A, Buck R P. 1984. Electronic semiconducting oxides as pH sensors. Sens Actuators, 5(2):137-146
    Gimmel P, Gompf B, Schmeisser D, et al. 1989. Ta2O5-gates of pH-sensitive devices:comparative spectroscopic and electrical studies. Sens Actuators, 17(1-2):195-202
    Han Chenhua, Pan Yiwen, Ye Ying. 2009. CO2 microelectrode based on Zn-Al-LDH-ion carrier and its characterization. J Trop Oceanogr (in Chinese), 28(4):35-41
    He Shichang, Zhang Yuanhui, Chen Liqi, et al. 2014. Advances in the studies of ocean acidification. Mar Sci (in Chinese), 38(6):85-93
    Huang Wending, Cao H, Deb S, et al. 2011. A flexible pH sensor based on the iridium oxide sensing film. Sens Actuators:A. Phys, 169(1):1-11
    Huang Yuanfeng, Li Jun, Yin Tianya, et al. 2015. A novel all-solid-state ammonium electrode with polyaniline and copolymer of aniline/2, 5-dimethoxyaniline as transducers. J Electroanal Chem, 741:87-92
    Huang Xiaoyan, Liu Bo, Li Xue. 2005. Applications of titanium alloys in warship building. Southern Met (in Chinese), (6):10-11, 33
    Kim T Y, Yang S. 2014. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sens Actuators:B. Chem, 196:31-38
    Kreider K G, Tarlov M J, Cline J P. 1995. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sens Actuators:B. Chem, 28(3):167-172
    Kuo Limin, Chou Y C, Chen Kuanneng, et al. 2014. A precise pH microsensor using RF-sputtering IrO2 and Ta2O5 films on Pt-electrode. Sens Actuators:B. Chem, 193:687-691
    Maurya D K, Sardarinejad A, Alameh K. 2013. High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode. Sens Actuators:A. Phys, 203:300-303
    McLaughlin K, Ahn J H, Litton R M, et al. 2007. Use of salinity mixing models to estimate the contribution of creek water fecal indicator bacteria to an estuarine environment:Newport Bay, California. Water Res, 41(16):3595-3604
    Olthuis W, Robben M A M, Bergveld P, et al. 1990. pH sensor properties of electrochemically grown iridium oxide. Sens Actuators:B. Chem, 2(4):247-256
    Pan Yiwen, Seyfried W E Jr. 2008. Experimental and theoretical constraints on pH measurements with an iridium oxide electrode in aqueous fluids from 25 to 175°C and 25 MPa. J Solution Chem, 37(8):1051-1062
    Prats-Alfonso E, Abad L, Casañ-Pastor N, et al. 2013. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron, 39(1):163-169
    Steegstra P, Ahlberg E. 2012. Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim Acta, 76:26-33
    Tarlov M J, Semancik S, Kreider K G. 1990. Mechanistic and response studies of iridium oxide pH sensors. Sens Actuators:B. Chem, 1(1-6):293-297
    Wang Siru, Yin Kedong, Cai Weijun, et al. 2012. Advances in studies of ecological effects of ocean acidification. Acta Ecol Sinica (in Chinese), 32(18):5859-5869
    Whitfield M, Butler R A, Covington A K. 1985. The determination of pH in estuarine waters I. Definition of pH scales and the selection of buffers. Oceanol Acta, 8(4):423-432
    Xie Zhong, Liu Yexiang. 1998. Reference electrode for electrochemical studies in fused chloride. Chin J Nonferrous Met (in Chinese), 8(4):668-672
    Xu Bin, Zhang Weide. 2010. Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor. Electrochim Acta, 55(8):2859-2864
    Yamamoto K, Shi Guoyue, Zhou Tianshu, et al. 2003. Solid-state pH ultramicrosensor based on a tungstic oxide film fabricated on a tungsten nanoelectrode and its application to the study of endothelial cells. Anal Chim Acta, 480(1):109-117
    Yao Sheng, Wang Min, Madou M. 2001. A pH electrode based on melt-oxidized iridium oxide. J Electrochem Soc, 148(4):H29-H36
    Zhao Rongrong, Xu Meizhu, Wang Jian, et al. 2010. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta, 55(20):5647-5651
  • 加载中
计量
  • 文章访问数:  939
  • HTML全文浏览量:  43
  • PDF下载量:  905
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07

目录

    /

    返回文章
    返回