The variation of turbulent diapycnal mixing at 18°N in the South China Sea stirred by wind stress

LIU Yongzheng JING Zhao WU Lixin

刘永正, 荆钊, 吴立新. 风应力搅拌下南海18°N断面跃密混合的变化[J]. 海洋学报英文版, 2017, 36(5): 26-30. doi: 10.1007/s13131-017-1067-2
引用本文: 刘永正, 荆钊, 吴立新. 风应力搅拌下南海18°N断面跃密混合的变化[J]. 海洋学报英文版, 2017, 36(5): 26-30. doi: 10.1007/s13131-017-1067-2
LIU Yongzheng, JING Zhao, WU Lixin. The variation of turbulent diapycnal mixing at 18°N in the South China Sea stirred by wind stress[J]. Acta Oceanologica Sinica, 2017, 36(5): 26-30. doi: 10.1007/s13131-017-1067-2
Citation: LIU Yongzheng, JING Zhao, WU Lixin. The variation of turbulent diapycnal mixing at 18°N in the South China Sea stirred by wind stress[J]. Acta Oceanologica Sinica, 2017, 36(5): 26-30. doi: 10.1007/s13131-017-1067-2

风应力搅拌下南海18°N断面跃密混合的变化

doi: 10.1007/s13131-017-1067-2
基金项目: The National Basic Research Program (973 Program) of China under contract No. 2013CB956201; the National Natural Science Foundation of China under contract Nos 41521091, U1406401 and 41622602; the Global Change Project under contract No. GASI-03-01-01-05.

The variation of turbulent diapycnal mixing at 18°N in the South China Sea stirred by wind stress

  • 摘要: 利用2004至2010年每年9月的CTD数据,基于细尺度参数化方案估计南海18°N断面跃密混合的时空变化。时空平均的涡旋扩散系数比外大洋的大一个量级,可以达到10-4 m2/s。在南海内潮和近惯性内波都对跃密混合的供能起重要作用。前者主导了深海的跃密混合,然而对上层海洋的贡献也是不可忽略的,会增强在粗糙海底区域上层的跃密混合。比较起来,风生惯性内波的影响主要限制在海洋上层。无论在平坦或粗糙海底区域,随着风输入近惯性能量的增加,从2005至2010年上700 m跃密混合有增加趋势。
  • Alford M. 2001. Internal swell generation:the spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J Phys Oceanogr, 31(8):2359-2368
    Alford M H. 2003. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys Res Lett, 30(8):1424
    Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69
    Egbert G D, Ray R D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res, 106(C10):22475-22502
    Ge Lili, Cheng Xuhua, Qi Yiquan, et al. 2012. Upper-layer geostrophic volume, heat and salt transports across 18°N in the South China Sea. J Trop Oceanogr (in Chinese), 31(1):10-17
    Gill A E, Green J S A, Simmons A J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res:Oceanogr Abstr, 21(7):499-528
    Gregg M C. 1987. Diapycnal mixing in the thermocline:a review. J Geophys Res, 92(C5):5249-5289
    Gregg M C, Kunze E. 1991. Internal wave shear and strain in Santa Monica basin. J Geophys Res, 96(C9):16709-16719
    Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422(6931):513-515
    Jayne S R, St Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophys Res Lett, 28(5):811-814
    Jing Zhao, Wu Lixin. 2010. Seasonal variation of turbulent diapycnal mixing in the northwestern pacific stirred by wind stress. Geophys Res Lett, 37(23):L23604
    Jing Zhao, Wu Lixin. 2014. Intensified diapycnal mixing in the midlatitude western boundary currents. Sci Rep, 4:7412
    Jing Zhao, Wu Lixin, Li Lei, et al. 2011. Turbulent diapycnal mixing in the subtropical northwestern pacific:spatial-seasonal variations and role of eddies. J Geophys Res, 116(C10):C10028
    Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr, 36(8):1553-1576
    Kunze E, Kennelly M A, Sanford T B. 1992. The depth dependence of shear finestructure off Point Arena and near Pioneer Seamount. J Phys Oceanogr, 22(1):29-41
    Li Ying, Xu Yongsheng. 2014. Penetration depth of diapycnal mixing generated by wind stress and flow over topography in the northwestern pacific. J Geophys Res, 119(8):5501-5514
    Munk W, Wunsch C. 1998. Abyssal recipes:Ⅱ. Energetics of tidal and wind mixing. Deep-Sea Res:I, 45(12):1977-2010
    Pollard R T, Millard Jr R C. 1970. Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res:Oceanogr Abstr, 17(4):813-816
    Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. J Phys Oceanogr, 25(3):306-328
    Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr, 39(12):3191-3203
    Waterhouse A F, Mackinnon J A, Nash J D, et al. 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr, 44(7):1854-1872
    Whalen C B, Talley L D, MacKinnon J A. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys Res Lett, 39(18):L18612
    Wu Lixin, Jing Zhao, Riser S, et al. 2011. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat Geosci, 4(6):363-366
    Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech, 36(1):281-314
    Yang Haiyuan, Wu Lixin. 2012. Trends of upper-layer circulation in the South China Sea during 1959-2008. J Geophys Res, 117(C8):C08037
    Zhai Xiaoming, Greatbatch R J, Eden C, et al. 2009. On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J Phys Oceanogr, 39(11):3040-3045
  • 加载中
计量
  • 文章访问数:  923
  • HTML全文浏览量:  31
  • PDF下载量:  1135
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-19

目录

    /

    返回文章
    返回