Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea

DING Ling ZHAO Meixun YU Meng LI Li HUANG Chi-Yue

丁玲, 赵美训, 于蒙, 李莉, 黄琦瑜. 南海东北部冷泉区沉积物中有机质来源的生物标志物分析与环境指示意义[J]. 海洋学报英文版, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1
引用本文: 丁玲, 赵美训, 于蒙, 李莉, 黄琦瑜. 南海东北部冷泉区沉积物中有机质来源的生物标志物分析与环境指示意义[J]. 海洋学报英文版, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1
DING Ling, ZHAO Meixun, YU Meng, LI Li, HUANG Chi-Yue. Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1
Citation: DING Ling, ZHAO Meixun, YU Meng, LI Li, HUANG Chi-Yue. Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1

南海东北部冷泉区沉积物中有机质来源的生物标志物分析与环境指示意义

doi: 10.1007/s13131-017-1068-1

Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea

  • 摘要: 本文对台湾西南部南海冷泉区的2个沉积物岩心进行了多参数生物标志物分析。利用总有机碳标准化的陆源生物标志物(长链正构烷烃)和海源生物标志物(菜子甾醇、甲藻甾醇、长链烯酮和iso-GDGTs)的含量与比值(TMBR,1/Pmar-aq,BIT)指示陆源有机质(TOM)与海源有机质(MOM)对沉积总有机质的相对贡献。结果显示,MD052911岩心以海源有机质为主,ORI-860-22岩心的沉积有机质则主要来自于陆源输入;2个站位不同的地形形态可能是导致陆源有机质比例存在差异的原因。BIT指标的结果显示河流输入的陆地土壤有机质并不是这一区域沉积有机质中陆源有机质的主要来源。甲烷氧化古菌(MOA)的特征生物标志物仅在ORI-860-22岩心172 cm深度处的一个样品中被检测到,且样品有着异常高的iso-GDGTs含量和MI值(Methane Index,0.94);而在MD052911岩心中并未检测到MOA生物标志物且MI值较低。结果表明,ORI-860-22岩心172 cm深度附近发生了明显的甲烷厌氧氧化过程(AOM);而MD052911岩心中甲烷氧化古菌对iso-GDGTs贡献较低,不存在明显的甲烷厌氧氧化作用。不连续的甲烷溢出和较低的甲烷通量并不能引起甲烷的厌氧氧化过程。此外,2个岩心不同的TEX86和U37K'温度分布表明,甲烷厌氧氧化作用导致ORI-860-22岩心较低的TEX86温度,而对MD052911岩心的TEX86温度结果没有明显影响。
  • Aquilina A, Knab N J, Knittel K, et al. 2010. Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes. Org Geochem, 41(4):414-426
    Bian Liangqiao, Hinrichs K U, Xie Tianmin, et al. 2001. Algal and archaeal polyisoprenoids in a recent marine sediment:molecular isotopic evidence for anaerobic oxidation of methane. Geochem Geophys Geosyst, 2(1), doi: 10.1029/2000GC000112
    Biddle J F, Lipp J S, Lever M A, et al. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A, 103(10):3846-3851
    Blumenberg M, Seifert R, Reitner J, et al. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A, 101(30):11111-11116
    Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804):623-626
    Boon J J, Rijpstra W I C, de Lange F, et al. 1979. Black sea sterol-a molecular fossil for dinoflagellate blooms. Nature, 277(5692):125-127
    Bouloubassi I, Aloisi G, Pancost R D, et al. 2006. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Org Geochem, 37(4):484-500
    Chen Zhong, Huang C Y, Zhao Meixun, et al. 2011. Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea. J Asian Earth Sci, 40(1):363-370
    Chi W C, Reed D L, Liu C S, et al. 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestr Atmos Ocean Sci, 9(4):779-794
    Chuang P C, Yang T F, Lin S, et al. 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestr Atmos Ocean Sci, 17(4):903-920
    Dadson S J, Hovius N, Chen H, et al. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648-651
    Elvert M, Hopmans E C, Treude T, et al. 2005. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach. Geobiology, 3(3):195-209
    Elvert M, Suess E, Whiticar M J. 1999. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 86(6):295-300
    Guan Hongxiang, Sun Yongge, Zhu Xiaowei, et al. 2013. Factors controlling the types of microbial consortia in cold-seep environments:a molecular and isotopic investigation of authigenic carbonates from the South China Sea. Chem Geol, 354:55-64
    Hinrichs K U, Summons R E, Orphan V, et al. 2000. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem, 31(12):1685-1701
    Hoehler T M, Alperin M J, Albert D B, et al. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles, 8(4):451-463
    Hopmans E C, Schouten S, Pancost R D, et al. 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom, 14(7):585-589
    Hopmans E C, Weijers J W H, Schefuß E, et al. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1-2):107-116
    Huang C Y, Chien C W, Zhao Meixun, et al. 2006a. Geological investigations of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan. Terrestr Atmos Ocean Sci, 17(4):679-702
    Huang C Y, Yuan P B, Tsao S J. 2006b. Temporal and spatial records of active arc-continent collision in Taiwan:a synthesis. Geological Society of America Bulletin, 118(3-4):274-288
    Kaneko M, Naraoka H, Takano Y, et al. 2013. Distribution and isotopic signatures of archaeal lipid biomarkers associated with gas hydrate occurrences on the northern Cascadia Margin. Chem Geol, 343:76-84
    Kim J H, Schouten S, Hopmans E C, et al. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geoch Cosmochim Acta, 72(4):1154-1173
    Lee D H, Kim J H, Bahk J J, et al. 2013. Geochemical signature related to lipid biomarkers of ANMEs in gas hydrate-bearing sediments in the Ulleung Basin, East Sea (Korea). Mar Pet Geol, 47:125-135
    Lin S, Hsieh W C, Lim Y C, et al. 2006. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestr Atmos Ocean Sci, 17(4):883-902
    Liu C S, Deffontaines B, Lu C Y, et al. 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Mar Geophys Res, 25(1-2):123-137
    Liu C S, Schnürle P, Wang Y S, et al. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestr Atmos Ocean Sci, 17(4):615-644
    Marlowe I T, Brassell S C, Eglinton G, et al. 1984. Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem, 6:135-141
    Müller P J, Kirst G, Ruhland G, et al. 1998. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim Cosmochim Acta, 62(10):1757-1772
    Orphan V J, Hinrichs K U, Ussler W Ⅲ, et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67(4):1922-1934
    Pancost R D, Damste J S S. 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol, 195(1-4):29-58
    Pancost R D, Hopmans E C, Damsté J S S. 2001. Archaeal lipids in Mediterranean cold seeps:molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta, 65(10):1611-1627
    Pape T, Blumenberg M, Seifert R, et al. 2005. Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol Palaeoecol, 227(1-3):31-47
    Parkes R J, Cragg B A, Banning N, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol, 9(5):1146-1161
    Reeburgh W S, Ward B B, Whalen S C, et al. 1991. Black Sea methane geochemistry. Deep Sea Res Part A:Oceanogr Res Papers, 38(S2):S1189-S1210
    Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107(2):486-513
    Schouten S, Hopmans E C, Schefuß E, et al. 2002. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?. Earth Planet Sci Lett, 204(1-2):265-274
    Schouten S, Hopmans E C, Sinninghe Damsté J S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review. Org Geochem, 54:19-61
    Sikes E L, Uhle M E, Nodder S D, et al. 2009. Sources of organic matter in a coastal marine environment:evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Mar Chem, 113(3-4):149-163
    Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. 2002a. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Appl Environ Microbiol, 68(6):2997-3002
    Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. 2002b. Crenarchaeol:the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 43(10):1641-1651
    Smith R W, Bianchi T S, Li Xinxin. 2012. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers:implications for the BIT Index. Geochim Cosmochim Acta, 80:14-29
    Stadnitskaia A, Bouloubassi I, Elvert M, et al. 2008. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats. Org Geochem, 39(8):1007-1014
    Versteegh G J M, Zonneveld K A F. 2002. Use of selective degradation to separate preservation from productivity. Geology, 30(7):615-618
    Volkman J K, Barrett S M, Blackburn S I, et al. 1998. Microalgal biomarkers:a review of recent research developments. Org Geochem, 29(5-7):1163-1179
    Wegener G, Boetius A. 2009. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes. Biogeosciences, 6(5):867-876
    Wei Yuli, Wang Peng, Zhao Meixun, et al. 2014. Lipid and DNA evidence of dominance of planktonic archaea preserved in sediments of the South China Sea:insight for application of the TEX86 proxy in an unstable marine sediment environment. Geomicrobiol J, 31(4):360-369
    Weijers J W H, Lim K L H, Aquilina A, et al. 2011. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux. Geochem Geophys Geosyst, 12(10):Q10010
    Weijers J W H, Schouten S, Schefuß E, et al. 2009. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:a multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochim Cosmochim Acta, 73(1):119-132
    Weijers J W H, Schouten S, Spaargaren O C, et al. 2006. Occurrence and distribution of tetraether membrane lipids in soils:implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12):1680-1693
    Xing Lei, Zhang Hailong, Yuan Zineng, et al. 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Cont Shelf Res, 31(10):1106-1115
    Xing Lei, Zhao Meixun, Gao Wenxian, et al. 2014. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea. Org Geochem, 76:72-81
    Yu Xiaoguo, Han Xiqiu, Li Hongliang, et al. 2008. Biomarkers and carbon isotope composition of anaerobic oxidation of methane in sediments and carbonates of northeastern part of Dongsha, South China Sea. Haiyang Xuebao (in Chinese), 30(3):77-84
    Zhang C L, Li Yiliang, Wall J D, et al. 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30(3):239-242
    Zhang Yige, Zhang Chuanlun, Liu Xiaolei, et al. 2011. Methane Index:a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett, 307(3-4):525-534
    Zhao Meixun, Dupont L, Eglinton G, et al. 2003. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org Geochemis, 34(1):131-143
    Zhu Chun, Weijers J W H, Wagner T, et al. 2011. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin. Org Geochem, 42(4):376-386
  • 加载中
计量
  • 文章访问数:  2152
  • HTML全文浏览量:  82
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-13

目录

    /

    返回文章
    返回