A numerical simulation of latent heating within Typhoon Molave

LIU Yang LIN Wenshi LI Jiangnan WANG Gang YANG Song FENG Yerong

刘阳, 林文实, 李江南, 王刚, 杨崧, 冯业荣. 台风“莫拉菲”潜热的数值模拟研究[J]. 海洋学报英文版, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3
引用本文: 刘阳, 林文实, 李江南, 王刚, 杨崧, 冯业荣. 台风“莫拉菲”潜热的数值模拟研究[J]. 海洋学报英文版, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3
LIU Yang, LIN Wenshi, LI Jiangnan, WANG Gang, YANG Song, FENG Yerong. A numerical simulation of latent heating within Typhoon Molave[J]. Acta Oceanologica Sinica, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3
Citation: LIU Yang, LIN Wenshi, LI Jiangnan, WANG Gang, YANG Song, FENG Yerong. A numerical simulation of latent heating within Typhoon Molave[J]. Acta Oceanologica Sinica, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3

台风“莫拉菲”潜热的数值模拟研究

doi: 10.1007/s13131-017-1082-3
基金项目: The National Key Basic Research Program of China under contract No. 2014CB953904; the Natural Science Foundation of Guangdong Province under contract No. 2015A030311026; the National Natural Science Foundation of China under contract Nos 41275145 and 41275060.

A numerical simulation of latent heating within Typhoon Molave

  • 摘要: WRF天气研究和预报模式是新一代中尺度数值预报模式,本文采用最细2公里的网格距对台风“莫拉菲”内核的宏观、微观以及潜热过程进行数值模拟。通过对台风路径、风速大小、降水形态以及内核热力和动力结构的验证,证实了单向六参数WSM6方案的合理性。本文通过计算台风过程中的潜热加热率,揭示了总潜热主要来源于0℃层以下的凝结潜热和0℃层以上的凝华潜热。证实了与霰有关的云微物理过程是对总潜热贡献最重要的因子。除此之外,在本次台风“莫拉菲”的模拟中,其他重要的潜热贡献因子分别是水汽凝结成云水、云冰的凝华增长、雪的凝华增长、云冰的初始化、霰的凝华增长、云水被雪和霰收集、云水和雨水的蒸发、雪的升华、霰的升华、霰的融化以及云冰的升华。总体而言,本文模拟的潜热加热率廓线和TRMM卫星的廓线基本一致,尽管具体数值略有不同。
  • Adler R F, Rodgers E B. 1977. Satellite-observed latent heat release in a tropical cyclone. Mon Wea Rev, 105(8): 956-963
    Benjamin S O, Seaman N L. 1985. A simple scheme for objective analysis in curved flow. Mon Wea Rev, 113(7): 1184-1198
    Betts A K. 1986. A new convective adjustment scheme: Part I. Observational and theoretical basis. Quart J Roy Meteor Soc, 112(473): 677-691
    Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 46(20): 3077-3107
    Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665-669
    Gray W M. 1981. Recent advances in tropical cyclone research from rawindsonde composite analysis. World Meteorological Organization Programme on Research in Tropical Meteorology. Geneva, Switzerland: WMO, 407
    Hogsett W, Zhang D L. 2009. Numerical simulation of hurricane bonnie (1998): Part Ⅲ. Energetics. J Atmos Sci, 66(9): 2678-2696
    Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129-151
    Hong S Y, Lim K S S, Kim J H, et al. 2009. Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: ice-phase microphysics versus sedimentation effects. J Appl Meteor Climatol, 48(1): 61-76
    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 134(9): 2318-2341
    Houze R A Jr. 1997. Stratiform precipitation in regions of convection: A meteorological paradox. Bull Amer Meteor Soc, 78(10): 2179-2196
    Janjić Z I. 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev, 122(5): 927-945
    Johnson R H. 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: implications for cumulus parameterization. Mon Wea Rev, 112(8): 1590-1601
    Kummerow C, Hong Y, Olson W S, et al. 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteor, 40(11): 1801-1820
    Fong S K, Wu C S, Hao I P, et al. 2001. Numerical prediction experiment on Typhoon Maggie (9903). Acta Oceanol Sinica, 20(2): 171-181
    Lin W S, Xu S S, Sui C H. 2011. A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu. Meteor Atmos Phys, 113: 99-108
    Low-Nam S, Davis C. 2001. Development of a tropical cyclone bogussing scheme for the MM5 system. In: Proceedings of the 11th PSU/NCAR Mesoscale Model User's Workshop. Colorado: Boulder, 130–134
    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 102(D14): 16663-16682, doi: 10.1029/97JD00237
    Molinari J, Dudek M. 1992. Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Wea Rev, 120(2): 326-344
    Olson W S, Kummerow C D, Hong Y, et al. 1999. Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J Appl Meteor, 38(6): 633-664
    Pattnaik S, Krishnamurti T N. 2007. Impact of cloud microphysical processes on hurricane intensity: Part 2. Sensitivity experiments. Meteor Atmos Phys, 97(1–4): 127-147
    Riehl H, Malkus J S. 1958. On the heat balance in the equatorial trough zone. Geophysica, 6: 503-538
    Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the Advanced Research WRF version 2. NCAR Technical Note NCAR/TN-468+STR, 88
    Sui C H, Lau K M, Tao W K, et al. 1994. The tropical water and energy cycles in a cumulus ensemble model: Part I. Equilibrium climate. J Atmos Sci, 51(5): 711-728
    Tao W K, Lang S, Simpson J, et al. 1993. Retrieval algorithms for estimating the vertical profiles of latent heat release: their applications for TRMM. J Meteor Soc Japan, 71(6): 685-700
    Tao W K, Smith E A, Adler R F, et al. 2006. Retrieval of latent heating from TRMM measurements. Bull Amer Meteor Soc, 87(11): 1555-1572
    Wang L, Lau K H, Zhang Q H, et al. 2008. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys Res Lett, 35(10): L10802, doi: 10.1029/2008GL033446
    Wu C C, Cheng H J, Wang Y Q, et al. 2009. A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon Wea Rev, 137(1): 21-40
    Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 30(4): 611-627
    Yang S, Smith E A. 1999. Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J Atmos Oceanic Technol, 16(6): 633-655
    Zhang D L, Kieu C Q. 2006. Potential vorticity diagnosis of a simulated hurricane: Part Ⅱ. Quasi-balanced contributions to forced secondary circulations. J Atmos Sci, 63(11): 2898-2914
  • 加载中
计量
  • 文章访问数:  848
  • HTML全文浏览量:  35
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-01-17

目录

    /

    返回文章
    返回