A backscattering model for a stratified seafloor

YU Shengqi LIU Baohua YU Kaiben YANG Zhiguo KAN Guangming

于盛齐, 刘保华, 于凯本, 杨志国, 阚光明. 一种分层海底反向散射模型[J]. 海洋学报英文版, 2017, 36(7): 56-65. doi: 10.1007/s13131-017-1084-1
引用本文: 于盛齐, 刘保华, 于凯本, 杨志国, 阚光明. 一种分层海底反向散射模型[J]. 海洋学报英文版, 2017, 36(7): 56-65. doi: 10.1007/s13131-017-1084-1
YU Shengqi, LIU Baohua, YU Kaiben, YANG Zhiguo, KAN Guangming. A backscattering model for a stratified seafloor[J]. Acta Oceanologica Sinica, 2017, 36(7): 56-65. doi: 10.1007/s13131-017-1084-1
Citation: YU Shengqi, LIU Baohua, YU Kaiben, YANG Zhiguo, KAN Guangming. A backscattering model for a stratified seafloor[J]. Acta Oceanologica Sinica, 2017, 36(7): 56-65. doi: 10.1007/s13131-017-1084-1

一种分层海底反向散射模型

doi: 10.1007/s13131-017-1084-1
基金项目: The National Natural Science Foundation of China under contract Nos 41606081, 41330965 and 41527809; the Taishan Scholar Project Funding under contract No. tspd20161007.

A backscattering model for a stratified seafloor

  • 摘要: 为了更为准确地对海底反向散射强度进行预报,本文考虑了海底的分层结构,认为海底由有限厚度的沉积层和半无限空间的基岩构成。在计算海水、沉积层和基岩中声场的基础上,考虑了包括海水-沉积物界面粗糙散射、沉积层体积散射、沉积物-基岩界面粗糙散射和基岩体积散射在内的四种散射机制,建立了适用于低频(100 Hz-10 kH)条件下的分层海底反向散射模型。仿真结果表明:频率较低时(小于1 kHz),沉积物-基岩界面粗糙散射和基岩体积散射更为显著;而随着频率的增大,两者对海底反向散射强度的贡献逐渐减弱,反向散射强度最终趋近于高频(10-100 kHz)海底散射模型的预报结果;当基岩中的剪切波声速和衰减逐渐减小时,预报结果趋近于全流体模型,继而从另一个方面验证了本文提出的分层海底散射模型的有效性。
  • Drumheller D M, Gragg R F. 2001. Evaluation of a fundamental integral in rough-surface scattering theory. The Journal of the Acoustical Society of America, 110(5): 2270-2275
    Efimov A, Ivakin A. 1987. Sound scattering by inhomogeneities of layered sediments. Sudostroitelnaya Promyshlennost: Akustika (in Russian), 2(1): 24-31
    Essen H H. 1994. Scattering from a rough sedimental seafloor containing shear and layering. The Journal of the Acoustical Society of America, 95(3): 1299-1310
    Ivakin A N. 1986. Sound scattering by random inhomogeneities of stratified ocean sediments. Soviet Physics Acoustics, 32(6): 492-496
    Ivakin A N. 1990. Sound scattering by inhomogeneities of an elastic half-space. Soviet Physics Acoustics, 36(4): 377-380
    Ivakin A N. 1994a. Sound scattering by the rough interface and volume inhomogeneities of the sea bottom. Acoustical Physics, 40(3): 427-428
    Ivakin A N. 1994b. Sound scattering by rough interfaces of layered media. In: Crocker M J, ed. Third International Congress on Air- and Structure-borne Sound and Vibration. Montreal, Canada: International Publications, 1563–1570
    Ivakin A N. 1997. First-order model for bottom volume and roughness scattering. In: Zhang Renhe, Zhou Jixun, eds. Shallow-water Acoustics. Beijing: China Ocean Press, 359–364
    Ivakin A N. 1998a. A unified approach to volume and roughness scattering. The Journal of the Acoustical Society of America, 103(2): 827-837
    Ivakin A N. 1998b. Models for seafloor roughness and volume scattering. In: Jourdain J Y, ed. OCEANS’98 Conference Proceedings. Nice, France: OCEANS’98 IEEE/OES Conference Organizing Committee, 518–521
    Ivakin A N, Jackson D R. 1998. Effects of shear elasticity on sea bed scattering: numerical examples. The Journal of the Acoustical Society of America, 103(1): 346-354
    Jackson D R, Briggs K B, Williams K L, et al. 1996. Tests of models for high-frequency seafloor backscatter. IEEE Journal of Oceanic Engineering, 21(4): 458-470
    Jackson D R, Ivakin A N. 1998. Scattering from elastic sea beds: first-order theory. The Journal of the Acoustical Society of America, 103(1): 336-345
    Jackson D R, Odom R I, Boyd M L, et al. 2010. A geoacoustic bottom interaction model (GABIM). IEEE Journal of Oceanic Engineering, 35(3): 603-617
    Jackson D R, Richardson M D. 2007. High-Frequency Seafloor Acoustics,: 338-348
    Li Yuxin, Yang Yihua, Li Zhikuan, et al. 1987. An experimental study of deep scattering layer in the South China Sea. Acta Oceanologica Sinica, 6(1): 64-67
    Lyons A P, Anderson A L, Dwan F S. 1994. Acoustic scattering from the seafloor: modeling and data comparison. The Journal of the Acoustical Society of America, 95(5): 2441-2451
    Moe J E, Jackson D R. 1994. First-order perturbation solution for rough surface scattering cross section including the effects of gradients. The Journal of the Acoustical Society of America, 96(3): 1748-1754
    Mourad P D, Jackson D R. 1989. High frequency sonar equation models for bottom backscatter and forward loss. In: Merry S L, ed. OCEANS’89 Conference Proceedings. Seattle, USA: OCEANS’98 IEEE/OES Conference Organizing Committee, 1168–1175
    Mourad P D, Jackson D R. 1993. A model/data comparison for low-frequency bottom backscatter. The Journal of the Acoustical Society of America, 94(1): 344-358
    Tang Dajun. 1996. A note on scattering by a stack of rough interfaces. The Journal of the Acoustical Society of America, 99(3): 1414-1418
    Williams K L, Jackson D R. 1998. Bistatic bottom scattering: model, experiments, and model/data comparison. The Journal of the Acoustical Society of America, 103(1): 169-181
    Williams K L, Jackson D R, Thorsos E I, et al. 2002. Acoustic backscattering experiments in a well characterized sand sediment: data/model comparisons using sediment fluid and Biot models. IEEE Journal of Oceanic Engineering, 27(3): 376-387
  • 加载中
计量
  • 文章访问数:  941
  • HTML全文浏览量:  59
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-12-16

目录

    /

    返回文章
    返回