Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge

LIAO Shili TAO Chunhui LI Huaiming ZHANG Guoyin LIANG Jin YANG Weifang

廖时理, 陶春辉, 李怀明, 张国堙, 梁锦, 杨伟芳. 基于PXRF的西南印度洋脊硫化物表层沉积物地球化学找矿研究[J]. 海洋学报英文版, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0
引用本文: 廖时理, 陶春辉, 李怀明, 张国堙, 梁锦, 杨伟芳. 基于PXRF的西南印度洋脊硫化物表层沉积物地球化学找矿研究[J]. 海洋学报英文版, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0
LIAO Shili, TAO Chunhui, LI Huaiming, ZHANG Guoyin, LIANG Jin, YANG Weifang. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0
Citation: LIAO Shili, TAO Chunhui, LI Huaiming, ZHANG Guoyin, LIANG Jin, YANG Weifang. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0

基于PXRF的西南印度洋脊硫化物表层沉积物地球化学找矿研究

doi: 10.1007/s13131-017-1085-0
基金项目: The Open Fund of Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources under contract No. KLMMR-2015-B-03; the China Ocean Mineral Resources Research and Development Association Project under contract Nos DY125-11-R-01 and DY125-11-R-05; the National Basic Research Program (973 program) of China under contract No. 2012CB417305.

Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge

  • 摘要: 海底热液喷发形成的热液羽状流中富含成矿物质,并沉淀在距离热液喷口不等的范围内。对西南印度洋中脊热液喷口附近、距离喷口中等距离、远离喷口的六个表层沉积物样品开展了不同粒度沉积物的便携式XRF(PXRF)分析。结果表明,PXRF可以有效获得的洋中脊钙质沉积物中成矿元素的富集特征。>40目的沉积物样品具有较高的Cu、Zn、Fe、Mn等元素含量,40目以下沉积物中则相对稳定,可能与粗粒沉积物中玄武岩碎屑/玻璃含量较高有关,与镜下鉴定结果一致。以热液喷口为中心,表层沉积物中表现出Cu、Zn、As、Fe、Mn的元素分带,靠近喷口的沉积物中具有较高的成矿元素的含量,并具有较高的Cu/Fe、Zn/Fe比值或者Cu/Mn与Zn/Mn比值。上述结论表明,洋中脊沉积物中成矿元素的含量主要受与喷口的距离的影响,而与粒度的关系不大,洋中脊沉积物地球化学找矿应采用40目以下粒径沉积物作为分析样品。通过PXRF获得的Cu、Zn、As、Fe、Mn等元素含量及其比值特征可以作为海底多金属硫化物沉积物地球化学找矿的指标,该方法满足快速有效识别洋中脊沉积物中地球化学异常的要求。
  • Aitchison J. 1986. The Statistical Analysis of Compositional Data. London: Chapman & Hall
    Arne D C, Mackie R A, Jones S A. 2014. The use of property-scale portable X-ray fluorescence data in gold exploration: advantages and limitations. Geochemistry: Exploration, Environment, Analysis, 14(3): 233-244
    Bloemsma M R, Zabel M, Stuut J B W, et al. 2012. Modelling the joint variability of grain size and chemical composition in sediments. Sedimentary Geology, 280: 135-148
    Chen Yuanyuan, Yu Bingsong, Su Xin, et al. 2013. Mineralogical and geochemical characteristics of the calcareous sediments in southwest Indian ridge. Geological Science and Technology Information (in Chinese), 32(1): 107-113
    Cronan D S. 1983. Metalliferous sediments in the CCOP/SOPAC region of the southwest Pacific: with particular reference to geochemical exploration for the deposits. UN ESCAP, CCOP/SOPAC Technical Bulletin no. 4: 55
    Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412
    Edmonds H N, German C R. 2004. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 68(4): 759-772
    Feely R A, Lewison M, Massoth G J, et al. 1987. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. Journal of Geophysical Research, 92(B11): 11347-11363
    Feely R A, Massoth G J, Baker E T, et al. 1992. Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. Journal of Geophysical Research, 97(B3): 3457-3468
    Fisher L, Gazley M F, Baensch A, et al. 2014. Resolution of geochemical and lithostratigraphic complexity: a workflow for application of portable X-ray fluorescence to mineral exploration. Geochemistry: Exploration, Environment, Analysis, 14(2): 149-159
    Gazley M F, Tutt C M, Brisbout L I, et al. 2014. Application of portable X-ray fluorescence analysis to characterize dolerite dykes at the Plutonic Gold Mine, Western Australia. Geochemistry: Exploration, Environment, Analysis, 14(3): 223-231
    Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283-300
    German C R. 2003. Hydrothermal activity on the eastern SWIR (50°-70°E): evidence from core-top geochemistry, 1887 and 1998. Geochemistry, Geophysics, Geosystems, 4(7): 9102
    German C R, Campbell A C, Edmond J M. 1991. Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth and Planetary Science Letters, 107(1): 101-114
    German C R, Hergt J, Palmer M R, et al. 1999. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chemical Geology, 155(1–2): 65-75
    German C R, Higgs N C, Thomson J, et al. 1993. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08'N, Mid-Atlantic Ridge. Journal of Geophysical Research, 98(B6): 9683-9692
    German C R, Sparks R S J. 1993. Particle recycling in the TAG hydrothermal plume. Earth and Planetary Science Letters, 116(1–4): 129-134
    Graham I J, Glasby G P, Churchman G J. 1997. Provenance of the detrital component of deep-sea sediments from the SW Pacific Ocean based on mineralogy, geochemistry and Sr isotopic composition. Marine Geology, 140(1–2): 75-96
    Hall G E M, Bonham-Carter G F, Buchar A. 2014. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials. Geochemistry: Exploration, Environment, Analysis, 14(2): 99-123
    Han Xiqiu, Wu Guanghai, Cui Ruyong, et al. 2010. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2°E. In: 2010 Fall Meeting. San Francisco: American Geophysical Union
    Han Zongzhu, Zhang He, Fan Dejiang, et al. 2012. The characteristic of geochemistry and genesis for mafic and Utrlmafic rocks from the 50 °E of Southwest Indian Ridge. Periodical of Ocean University of China (in Chinese), 42(9): 69-76
    Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155-1158
    Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at the modern seafloor: a review. Ore Geology Reviews, 10(2): 95-115
    Hou Xiandeng, He Yihua, Jones B T. 2004. Recent advances in portable X-ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39(1): 1-25
    Hrischeva E, Scott S D. 2007. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 71(14): 3476-3497
    Huang Dasong, Zhang Xiaoyu, Zhang Guoyin, et al. 2016. Geochemical characteristics of sediments in Southwest Indian Ridge 48.6°–51.7°E. Geological Science and Technology Information (in Chinese), 35(1): 22-29
    Keays R R, Scott R B. 1976. Precious metals in ocean-ridge basalts; implications for basalts as source rocks for gold mineralization. Economic Geology, 71(4): 705-720
    Kenna T C, Nitsche F O, Herron M M, et al. 2011. Evaluation and calibration of a field portable X-ray fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. Journal of Analytical Atomic Spectrometry, 26(2): 395-405
    Li Zhenggang, Chu Fengyou, Jin Lu, et al. 2016. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component. Acta Oceanologica Sinica, 35(2): 101-108
    Liao Guanghong, Zhou Beifeng, Liang Chujin, et al. 2016. Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge. Journal of Geophysical Research, 121(1): 836-860
    Lisitzin A P, Lukashin V N, Gordeev V V, et al. 1997. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins. Marine Geology, 142(1–4): 7-45
    Mäkinen E, Korhonen M, Viskari E L, et al. 2006. Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, & Soil Pollution, 171(1–4): 95-110
    Marchig V, Gundlach H, Möller P, et al. 1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50(3): 241-256
    Meinhardt A K, März C, Stein R, et al. 2014. Regional variations in sediment geochemistry on a transect across the Mendeleev Ridge (Arctic Ocean). Chemical Geology, 369: 1-11
    Melquiades F L, Appoloni C R. 2004. Application of XRF and field portable XRF for environmental analysis. Journal of Radioanalytical and Nuclear Chemistry, 262(2): 533-541
    Mottl M J, McConachy T F. 1990. Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N. Geochimica et Cosmochimica Acta, 54(7): 1911-1927
    Nakamura K, Kato Y, Tamaki K, et al. 2007. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez triple junction. Marine Geology, 239(3–4): 125-141
    Palma C, Oliveira A, Valença M, et al. 2013. Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region. Marine Pollution Bulletin, 75(1–2): 264-275
    Piercey S J, Devine M C. 2014. Analysis of powdered reference materials and known samples with a benchtop, field portable X-ray fluorescence (pXRF) spectrometer: evaluation of performance and potential applications for exploration lithogeochemistry. Geochemistry: Exploration, Environment, Analysis, 14(2): 139-148
    Piorek S. 1997. Field-portable X-ray fluorescence spectrometry: past, present, and future. Field Analytical Chemistry & Technology, 1(6): 317-329
    Radke L C, Heap A D, Douglas G, et al. 2011. A geochemical characterisation of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research Ⅱ, 58(7–8): 909-921
    Rona P A. 1984. Hydrothermal mineralization at seafloor spreading centers. Earth-Science Reviews, 20(1): 1-104
    Ross P S, Bourke A, Fresia B. 2014. Improving lithological discrimination in exploration drill-cores using portable X-ray fluorescence measurements: (1) Testing threes Olympus Innov-X analysers on unprepared cores. Geochemistry: Exploration, Environment, Analysis, 14(2): 171-185
    Rowe A J, Wilkinson J J, Coles B J, et al. 2004. Chicxulub: testing for post-impact hydrothermal input into the Tertiary ocean. Meteoritics & Planetary Science, 39(7): 1223-1231
    Rusakov V Y, Shilov V V, Ryzhenko B N, et al. 2013. Mineralogical and geochemical zoning of sediments at the Semenov cluster of hydrothermal fields, 13°31'–13°30'N, Mid-Atlantic Ridge. Geochemistry International, 51(8): 646-669
    Sands C M, Connelly D P, Statham P J, et al. 2012. Size fractionation of trace metals in the Edmond hydrothermal plume, Central Indian Ocean. Earth and Planetary Science Letters, 319–320: 15-22
    Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20’E: interaction with the Crozet hotspot?.. Geophysical Journal International, 179(2): 687-699
    Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15'E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303-317
    Shearme S, Cronan D S, Rona P A. 1983. Geochemistry of sediments from the TAG Hydrothermal Field, M.A.R. at latitude 26°N. Marine Geology, 51(3–4): 269-291
    Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26): 2828-2838
    Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59(19): 2266-2276
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge. Geology, 40(1): 47-50
    Wang Zhenbo, Wu Guanghai, Han Chenhua. 2014. Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E on the Southwest Indian Ridge. Journal of Marine Sciences (in Chinese), 32(1): 64-73
    Wang Hu, Yang Qunhui, Ji Fuwu, et al. 2012. The geochemical characteristics and Fe(Ⅱ) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge. Marine Chemistry, 134–135: 29-35
    Wu C M, Tsai H T, Yang K H, et al. 2012. How reliable is X-ray fluorescence (XRF) measurement for different metals in soil contamination?.. Environmental Forensics, 13(2): 110-121
    Xia Qinglin, Cheng Qiuming, Lu Jianpei, et al. 2011. Application of portable XRF technology to identification of mineralization and alteration along drill in the Nihe iron deposit, Anhui, East China. Earth Science-Journal of China University of Geosciences (in Chinese), 36(2): 336-340
    Yang Yaomin, Ye Jun, Shi Xuefa, et al. 2011. Mineralogy and geochemistry of submarine metalliferous sediments and significances for hydrothermal activity. Journal of Central South University: Science and Technology (in Chinese), 42(S2): 65-74
    Yuan Zhaoxian, Cheng Qiuming, Xia Qinglin, et al. 2014. Spatial patterns of geochemical elements measured on rock surfaces by portable X-ray fluorescence: application to hand specimens and rock outcrops. Geochemistry: Exploration, Environment, Analysis, 14(3): 265-276
    Zhou Huaiyang, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436): 195-200
  • 加载中
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  81
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 修回日期:  2017-03-17

目录

    /

    返回文章
    返回