A spatial resolution effect analysis of remote sensing bathymetry

LIANG Jian ZHANG Jie MA Yi

梁建, 张杰, 马毅. 空间分辨率对水深遥感反演的影响分析[J]. 海洋学报英文版, 2017, 36(7): 102-109. doi: 10.1007/s13131-017-1088-x
引用本文: 梁建, 张杰, 马毅. 空间分辨率对水深遥感反演的影响分析[J]. 海洋学报英文版, 2017, 36(7): 102-109. doi: 10.1007/s13131-017-1088-x
LIANG Jian, ZHANG Jie, MA Yi. A spatial resolution effect analysis of remote sensing bathymetry[J]. Acta Oceanologica Sinica, 2017, 36(7): 102-109. doi: 10.1007/s13131-017-1088-x
Citation: LIANG Jian, ZHANG Jie, MA Yi. A spatial resolution effect analysis of remote sensing bathymetry[J]. Acta Oceanologica Sinica, 2017, 36(7): 102-109. doi: 10.1007/s13131-017-1088-x

空间分辨率对水深遥感反演的影响分析

doi: 10.1007/s13131-017-1088-x
基金项目: The National Key Technology Research and Development Program of China under contract No. 2012BAB16B01.

A spatial resolution effect analysis of remote sensing bathymetry

  • 摘要: 遥感水深反演中空间分辨率的影响是一个重要的科学问题。本文使用东岛的QuickBird和WorldView-2多光谱影像及实测水深点进行实验研究,实验使用了原始空间分辨率(2.4/2m)以及4种降空间分辨率(4m,8m,16m和32m)的影像,使用相同的水深控制点开展水深遥感反演,并对水深反演结果使用相同的检查点进行精度验证。实验结果表明,随着空间分辨率由2.4/2m降低至4m,8m和16m,水深遥感反演的精度呈现出逐渐提高的趋势,进一步降低空间分辨率则会导致水深反演精度下降。当影像空间分辨率为16m时,水深反演结果误差最小且与实测水深值相关性最高,此时两景影像的水深反演平均相对误差分别21.2%和13.1%,相对于最大值分别降低了14.7%和2.9%;平均绝对误差分别为2.0m和1.4m,相对于最大值分别降低了1.0m和0.5m。本文研究结果为水深遥感反演研究与应用中遥感数据的选择提供了参考。
  • Atkinson P M, Kelly R E J. 1997. Scaling-up point snow depth data in the U.K. for comparison with SSM/I imagery. International Journal of Remote Sensing, 18(2): 437-443
    Fang Bin, Chen Bo, Zhang Yuan. 2007. Research on scale selection and mapping of inspecting biologic diversity using remote sensing. Geography and Geo-Information Science (in Chinese), 23(6): 78-81
    Han Peng, Gong Jianya. 2008. A review on cholce of optimal scale in remote sensing. Remote Sensing Information (in Chinese), 23(1): 96-99
    Hu Guobiao, Fu Yangbiao, Hu Xiaobao. 2011. Research on remote sensing image scale issue based on variogram suit. Technology Wind (in Chinese),(4): 34-35
    Huang Huiping, Wu Bingfang. 2006. Analysis to the relationship of feature size, objects scales, image resolution. Remote Sensing Technology and Application (in Chinese), 21(3): 243-248
    Lam N S N, Quattrochi D A. 1992. On the issues of scale, resolution, and fractal analysis in the mapping sciences. Professional Geographer, 44(1): 88-98
    Lausch A, Heurich M, Gordalla D, et al. 2013. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management, 308: 76-89
    Li Xiaowen, Wang Yiting. 2013. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica (in Chinese), 68(9): 1163-1169
    Liang Jian, Zhang Jie, Ma Yi. 2015. Analysis of the influence of the amount and proportion of control points and check points on the accuracy of bathymetry remote sensing inversion. Marine Science (in Chinese), 39(2): 15-19
    Liu Liangyun. 2014. Simulation and correction of spatialscaling effects for leaf area index. Journal of Remote Sensing (in Chinese), 18(6): 1158-1168
    Luan Haijun, Tian Qingjiu, Yu Tao, et al. 2013. Review of up-scaling of quantitative remote sensing. Advances in Earth Science (in Chinese), 28(6): 657-664
    Ma Yi, Zhang Jie, An Ni. 2014. Spectral fidelity analysis of compressed sensing reconstruction hyperspectral remote sensing image based on wavelet transformation. In: Li Shutao, Liu Chenglin, Wang Yaonan, eds. Pattern Recognition, Berlin Heidelberg: Springer, 138–148
    Marceau D J, Hay G J. 1999. Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing, 25(4): 357-366
    Ming Dongping, Wang Qun, Yang Jianyu. 2008. Spatial scale of remote sensing image and selection of optimal spatial resolution. Journal of Remote Sensing (in Chinese), 12(4): 529-537
    National Marine Data and Information Service. 2011. 2012 Tide Tables Vol. 3: From the Taiwan Straits to the Beibu Gulf (in Chinese). Beijing: China Ocean Press
    National Marine Information Center. 2004. 2005 Tide Tables Vol. 3: From the Taiwan Straits to the Beibu Gulf (in Chinese). Ji’nan: Shandong Cartographic Publishing House
    Peng Xiaojuan, Deng Ruru, Liu Xiaoping. 2004. A review of scale transformation in remote sensing. Geography and Geo-Information Science (in Chinese), 20(5): 6-10, 14
    Powers R P, Hay G J, Chen G. 2012. How wetland type and area differ through scale: a GEOBIA case study in Alberta’s Boreal Plains. Remote Sensing of Environment, 117: 135-145
    Su Lihong, Li Xiaowen, Huang Yuxia. 2001. An review on scale in remote sensing. Advance in Earth Science (in Chinese), 16(4): 544-548
    Wang Dapeng, Wang Zhoulong, Li Deyi, et al. 2007. Scale of quantitative desertification evaluation by remote sensing. Journal of Natural Disasters (in Chinese), 16(6): 140-144
    Woodcock C E, Strahler A H. 1987. The factor of scale in remote sensing. Remote Sensing of Environment, 21(3): 311-332
    Zhang Lun. 2013. The information loss of remote sensing image during scaling up procedure (in Chinese) [dissertation]. Beijing: University of Chinese Academy of Sciences
    Zhou Mi, Zhang Jielin. 2011. Review on scale transformation for remote sensing image and selection of optimal spatial resolution. World Nuclear Geoscience (in Chinese), 28(2): 94-98
  • 加载中
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  60
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-03
  • 修回日期:  2017-03-01

目录

    /

    返回文章
    返回