Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens

YANG Nan LI Fuyan JIAN Tiancai LIU Chongchong SUN Hushan WANG Lei XU Hui

杨楠, 李福艳, 坚天才, 刘冲冲, 孙虎山, 王磊, 徐慧. 姜提取物生物合成纳米银及其对水产病原菌抑菌性的研究[J]. 海洋学报英文版, 2017, 36(12): 95-100. doi: 10.1007/s13131-017-1099-7
引用本文: 杨楠, 李福艳, 坚天才, 刘冲冲, 孙虎山, 王磊, 徐慧. 姜提取物生物合成纳米银及其对水产病原菌抑菌性的研究[J]. 海洋学报英文版, 2017, 36(12): 95-100. doi: 10.1007/s13131-017-1099-7
YANG Nan, LI Fuyan, JIAN Tiancai, LIU Chongchong, SUN Hushan, WANG Lei, XU Hui. Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens[J]. Acta Oceanologica Sinica, 2017, 36(12): 95-100. doi: 10.1007/s13131-017-1099-7
Citation: YANG Nan, LI Fuyan, JIAN Tiancai, LIU Chongchong, SUN Hushan, WANG Lei, XU Hui. Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens[J]. Acta Oceanologica Sinica, 2017, 36(12): 95-100. doi: 10.1007/s13131-017-1099-7

姜提取物生物合成纳米银及其对水产病原菌抑菌性的研究

doi: 10.1007/s13131-017-1099-7
基金项目: The Scientific Research Projects of Shandong University under contract No. J15LE03; the Key Research and Development Program of Shandong Province under contract No. 2016GNC111016; the Key Research and Developement Program of Yantai under contract No. 2016ZH059.

Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens

  • 摘要: 随着水产养殖业的发展,由于抗生素滥用造成的环境污染和病原菌耐药性问题日趋严重,亟待开发一种抗生素的替代品加以解决。近年来,纳米银以其独特的优势被视作是一种新型的抗菌剂而受到普遍关注。本研究采用姜提取液生物合成纳米银,并将其与传统的化学还原法合成的纳米银相比较。合成的纳米银分别采用紫外-可见分光光度计、透射电子显微镜、X-射线晶体衍射仪和红外光谱仪进行了鉴定和表征,并对它们抑制6种典型的水产病原菌的抑菌活性进行了全面的分析。实验结果表明,姜提取物中的活性成分能象化学还原剂一样成功用于制备纳米银抑菌剂,并且生物合成的纳米银粒径更小,稳定性更高,并且对供试水产病原菌具有更显著的抑菌活性。因此,利用姜提取物生物合成纳米银将在水产领域中具有广阔的应用前景。
  • Binupriya A R, Sathishkumar M, Yun S I. 2010. Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Industrial & Engineering Chemistry Research, 49(2): 852-858
    Butt M S, Sultan M T. 2011. Ginger and its health claims: molecular aspects. Critical Reviews in Food Science and Nutrition, 51(5): 383-393
    Darroudi M, Ahmad M B, Zak A K, et al. 2011. Fabrication and characterization of gelatin stabilized silver nanoparticles under UV-light. International Journal of Molecular Sciences, 12(12): 6346-6356
    Dehghani I, Mostajeran A, Asghari G. 2011. In vitro and in vivo production of gingerols and zingiberene in ginger plant (Zingiber officinale Roscoe). Iranian Journal of Pharmaceutical Sciences, 7(2): 117-121
    Ding Mingshuang, Leach M J, Bradley H. 2013. A systematic review of the evidence for topical use of ginger. EXPLORE: The Journal of Science and Healing, 9(6): 361-364
    Dubey S P, Lahtinen M, Sillanpää M. 2010. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1-3): 34-41
    Francis G, Makkar H P S, Becker K. 2001. Antinutritional factors present in plant derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4): 197-227
    Hebbalalu D, Lalley J, Nadagouda M N, et al. 2013. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chemistry & Engineering, 1(7): 703-712
    Kim J S, Kuk E, Yu K N, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95-101
    Leach M J, Kumar S. 2008. The clinical effectiveness of Ginger (Zingiber officinale) in adults with osteoarthritis. International Journal of Evidence-Based Healthcare, 6(3): 311-320
    Martinez-Gutierrez F, Olive P L, Banuelos A, et al. 2010. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine, 6(5): 681-688
    Miri A, Sarani M, Bazaz M R, et al. 2015. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141: 287-291
    Mulvaney P. 1996. Surface Plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3): 788-800
    Narayanan K B, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1-2): 1-13
    Niraimathi K L, Sudha V, Lavanya R, et al. 2013. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn. ) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102: 288-291
    Pal S, Tak Y K, Song J M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6): 1712-1720
    Panáček A, Kvítek L, Prucek R, et al. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33): 16248-16253
    Park M, Bae J, Lee D S. 2008. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacterial. Phytotherapy Research, 22(11): 1446-1449
    Pavagadhi S, Sathishkumar M, Balasubramanian R. 2014. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment. Water Research, 55: 280-291
    Sadeghi B, Gholamhoseinpoor F. 2015. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134: 310-315
    Schmidt A S, Bruun M S, Dalsgaard I, et al. 2000. Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Applied and Environmental Microbiology, 66(11): 4908-4915
    Shukla Y, Singh M. 2007. Cancer preventive properties of ginger: a brief review. Food and Chemical Toxicology, 45(5): 683-690
    Singh M, Singh S, Prasad S, et al. 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 3(3): 115-122
    Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1): 177-182
    Teeguarden J G, Hinderliter P M, Orr G, et al. 2007. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences, 95(2): 300-312
    Velmurugan P, Anbalagan K, Manosathyadevan M, et al. 2014. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37(10): 1935-1943
    Vidhu V K, Aromal S A, Philip D. 2011. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1): 392-397
    Wang Lei, Liu Chongchong, Wang Yiyan, et al. 2016. Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Current Applied Physics, 16(9): 969-973
  • 加载中
计量
  • 文章访问数:  1407
  • HTML全文浏览量:  226
  • PDF下载量:  1372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-22

目录

    /

    返回文章
    返回