On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction

XIA Ruibin LIU Chengyan CHENG Chen

夏瑞彬, 刘成彦, 程晨. 副热带东北太平洋混合层深度及其对潜沉的影响[J]. 海洋学报英文版, 2018, 37(3): 51-62. doi: 10.1007/s13131-017-1102-3
引用本文: 夏瑞彬, 刘成彦, 程晨. 副热带东北太平洋混合层深度及其对潜沉的影响[J]. 海洋学报英文版, 2018, 37(3): 51-62. doi: 10.1007/s13131-017-1102-3
XIA Ruibin, LIU Chengyan, CHENG Chen. On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction[J]. Acta Oceanologica Sinica, 2018, 37(3): 51-62. doi: 10.1007/s13131-017-1102-3
Citation: XIA Ruibin, LIU Chengyan, CHENG Chen. On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction[J]. Acta Oceanologica Sinica, 2018, 37(3): 51-62. doi: 10.1007/s13131-017-1102-3

副热带东北太平洋混合层深度及其对潜沉的影响

doi: 10.1007/s13131-017-1102-3
基金项目: The National Natural Science Foundation of China under contract Nos 41606217, 41675064 and 41406214; the Scientific Research Foundation for the Talent Start-Up of University of Information Science and Technology under contract No. 2015r043; the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting under contract No. LOMF1702; the China Scholarship Council under contract No. 201708320046.

On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction

  • 摘要: 本文利用九个CMIP5 模式的模拟结果对副热带东北太平洋混合层深度(MLD)和潜沉率在现在气候背景下的特征进行了探究。与观测数据相比,模式结果能够较好的模拟MLD 和潜沉率的空间分布结构。MLD 的空间分布是不均匀的,晚冬在(28°N, 135°W)存在一个局地大值区(>140 m)。MLD 的不均匀分布导致在局地最大值区域以南形成了强的MLD 锋面,控制了侧向潜沉率的分布,继而决定了潜沉率的不均匀分布特征。根据MLD 区域间差异性的特征,我们将该海区分成了两个区域。尽管在数值大小上与侧向潜沉率相当,相对均匀的艾克曼抽吸对潜沉率空间不均匀性的贡献非常小。在南区,向北的暖艾克曼平流(-1.75×10-7 K/s)控制了上层海洋热平流(-0.85×10-7 K/s),阻碍着MLD 的加深。在模式集合平均结果中,该海洋平流对MLD 的贡献大约为-29.0 m/mon,导致了与热通量贡献(33.9 m/mon)的抵消。然而在北区,向南的冷平流有利于MLD 的加深(21.4 m/mon),与海表热通量的贡献(30.4 m/mon)接近。总之,MLD 不均匀分布是由海洋热平流的不均匀分布决定的。该发现暗示着上层海洋流动对冬季MLD 和潜沉的变化起到重要作用。
  • Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8): 2999-3017
    Dawe J T, Thompson L A. 2007. PDO-related heat and temperature budget changes in a model of the North Pacific. Journal of Climate, 20(10): 2092-2108
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12): C12003
    Deser C, Blackmon M L. 1995. On the relationship between tropical and North Pacific sea surface temperature variations. Journal of Climate, 8(6): 1677-1680
    Dong Shenfu, Sprintall J, Gille S T, et al. 2008. Southern Ocean mixed-layer depth from Argo float profiles. Journal of Geophysical Research, 113(C6): C06013
    Dunne J P, John J C, Adcroft A J, et al. 2012. GFDL's ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. Journal of Climate, 25(19): 6646-6665
    Hu Haibo, Liu Qinyu, Zhang Yuan, et al. 2011. Variability of subduction rates of the subtropical North Pacific mode waters. Chinese Journal of Oceanology and Limnology, 29(5): 1131-1141
    Kara A B, Rochford P A, Hurlburt H E. 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research, 108(C3): 3079
    Kraus E B. 1972. Atmospheric-Ocean Interaction. London: Oxford University Press, 255
    Levitus S. 1982. Climatological atlas of the world ocean. Eos, Transactions American Geophysical Union, 64(49): 962-963
    Levitus S, Boyer T P. 1994. World Ocean Atlas 1994. Volume 4, Temperature. Washington, DC: National Environmental Satellite, Data, and Information Service
    Liu Chengyan, Wang Zhaomin. 2014. On the response of the global subduction rate to globalwarming in coupled climate models. Advances in Atmospheric Sciences, 31(1): 211-218
    Liu Chengyan, Wang Zhaomin, Li Bingrui, et al. 2017. On the response of subduction in the South Pacific to an intensification of westerlies and heat flux in an eddy permitting ocean model. Advances in Atmospheric Sciences, 34(4): 521-531
    Liu Chengyan, Wu Lixin. 2012. An intensification trend of South Pacific mode water subduction rates over the 20th century. Journal of Geophysical Research, 117(C7): C07009
    Luo Yiyong, Liu Qinyu, Rothstein L M. 2009. Simulated response of North Pacific Mode Waters to global warming. Geophysical Research Letters, 36(23): L23609
    Marshall J C, Nurser A J G, Williams R G. 1993. Inferring the subduction rate and period over the North Atlantic. Journal of Physical Oceanography, 23(7): 1315-1329
    Monterey G I, Levitus S. 1997. Climatological Cycle of Mixed Layer Depth in the World Ocean. Washington DC: U.S. Government Printing Office, NOAA NESDIS, 5
    Pan Aijun, Wan Xiaofang, Liu Qinyu. 2011. Diagnostics of mixed-layer thermodynamics in the formation regime of the North Pacific subtropical mode water. Journal of Tropical Oceanography (in Chinese), 30(5): 8-18
    Pond S, Pickard G L. 1983. Introductory Dynamical Oceanography. 2nd ed. New York: Pergamon, 379
    Qiu Bo. 2002. The Kuroshio Extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction. Journal of Oceanography, 58(1): 57-75
    Qiu Bo, Chen Shuiming. 2006. Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. Journal of Physical Oceanography, 36(7): 1365-1380
    Qiu Bo, Kelly K A. 1993. Upper-ocean heat balance in the Kuroshio Extension region. Journal of Physical Oceanography, 23(9): 2027-2041
    Qu Tangdong, Chen Ju. 2009. A North Pacific decadal variability in subduction rate. Geophysical Research Letters, 36(22): L22602
    Stommel H. 1979. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proceedings of the National Academy of Sciences of the United States of America, 76(7): 3051-3055
    Suga T, Motoki K, Aoki Y, et al. 2004. The North Pacific climatology of winter mixed layer and Mode Waters. Journal of Physical Oceanography, 34(1): 3-22
    Toyoda T, Awaji T, Ishikawa Y, et al. 2004. Preconditioning of winter mixed layer in the formation of North Pacific Eastern Subtropical Mode Water. Geophysical Research Letters, 31: L17206
    Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485-498
    Tsujino H, Yasuda T. 2004. Formation and circulation of mode waters of the North Pacific in a high-resolution GCM. Journal of Physical Oceanography, 34(2): 399-415
    Williams R G. 1991. The role of the mixed layer in setting the potential vorticity of the main thermocline. Journal of Physical Oceanography, 21(12): 1803-1814
    Woods J D. 1985. The physics of pycnocline ventilation. In: Nihoul J C J, ed. Coupled Ocean-Atmosphere Models. London: Elsevier, 543-590
    Xia Ruibin, Liu Qinyu, Xu Lixiao, et al. 2015. North Pacific eastern subtropical mode water simulation and future projection. Acta Oceanologica Sinica, 34(3): 25-30
    Xie Shangping, Deser C, Vecchi G A, et al. 2010. Global warming pattern formation: sea surface temperature and rainfall. Journal of Climate, 23(4): 966-986
    Xie Shangping, Kunitani T, Kubokawa A, et al. 2000. Interdecadal thermocline variability in the North Pacific for 1958-97: a GCM simulation. Journal of Physical Oceanography, 30(11): 2798-2813
    Xie Shangping, Xu Lixiao, Liu Qinyu, et al. 2011. Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. Journal of Climate, 24(4): 1212-1225
    Xu Lixiao, Li Peilaing, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505
    Xu Lixiao, Xie Shangping, Liu Qinyu, et al. 2012. Response of the North Pacific subtropical countercurrent and its variability to global warming. Journal of Oceanography, 68(1): 127-137
  • 加载中
计量
  • 文章访问数:  749
  • HTML全文浏览量:  42
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-04

目录

    /

    返回文章
    返回