An evaluation of new satellite-derived latent and sensible heat fluxes with moored buoy data, OAFlux and NCEP2 reanalysis products

ZHANG Lei SHI Hanqing

张雷, 石汉青. 基于浮标、NCEP2及OAFlux产品的新海表感热和潜热通量对比分析[J]. 海洋学报英文版, 2017, 36(9): 27-38. doi: 10.1007/s13131-017-1108-x
引用本文: 张雷, 石汉青. 基于浮标、NCEP2及OAFlux产品的新海表感热和潜热通量对比分析[J]. 海洋学报英文版, 2017, 36(9): 27-38. doi: 10.1007/s13131-017-1108-x
ZHANG Lei, SHI Hanqing. An evaluation of new satellite-derived latent and sensible heat fluxes with moored buoy data, OAFlux and NCEP2 reanalysis products[J]. Acta Oceanologica Sinica, 2017, 36(9): 27-38. doi: 10.1007/s13131-017-1108-x
Citation: ZHANG Lei, SHI Hanqing. An evaluation of new satellite-derived latent and sensible heat fluxes with moored buoy data, OAFlux and NCEP2 reanalysis products[J]. Acta Oceanologica Sinica, 2017, 36(9): 27-38. doi: 10.1007/s13131-017-1108-x

基于浮标、NCEP2及OAFlux产品的新海表感热和潜热通量对比分析

doi: 10.1007/s13131-017-1108-x
基金项目: The National Natural Science Foundation of China under contract No. 41576171.

An evaluation of new satellite-derived latent and sensible heat fluxes with moored buoy data, OAFlux and NCEP2 reanalysis products

  • 摘要: 利用全极化微波辐射计WindSat的海表面温度、风速产品以及欧洲数值预报中心(ECMWF)提供的海表空气温度及湿度数据,基于COARE 3.0算法,形成了一个新的海表面感热和潜热通量数据集。利用海面固定浮标计算结果、NCEP2及OAFlux提供的海表热通量产品对其进行了对比分析。研究结果表明:基于WindSat和ECMWF环境参数计算得到的海表感热和潜热通量与浮标的计算结果相比,其平均偏差分别为-0.39 W/m2 and -8.09 W/m2;此外,其均方根误差分别为5.53 W/m2 and 24.69 W/m2,并且在一定范围内,随着浮标风速的增加,均方根误差也随之增大。误差随其他环境要素(如海表面温度、空气湿度及空气温度)的变化呈现出不同的特征。潜热通量空间变化大,在北半球的冬季,受冬季风等因素的影响,潜热通量的高值区分布在湾流区,主要位于日本的东部海域及美国的东海岸。在印度洋、太平洋以及大西洋海域,潜热和感热通量的季节变化是明显的。基于WindSat和ECMWF环境参数计算得到的海表感热和潜热通量与NCEP2和OAFlux产品有着类似的纬向平均分布,局部区域存在着一定的偏差。
  • Andersson A, Fennig K, Klepp C, et al.. 2010. The Hamburg ocean atmosphere parameters and fluxes from satellite data-HOAPS-3. Earth Syst Sci Data, 2(2):215-234
    Andersson A, Klepp C, Fennig K, et al.. 2011. Evaluation of HOAPS-3 ocean surface freshwater flux components. J Appl Meteor Climatol, 50(2):379-398
    Ayina L H, Bentamy A, Mestas-Nuñez A M, et al.. 2006. The impact of satellite winds and latent heat fluxes in a numerical simulation of the tropical Pacific Ocean. J Climate, 19(22):5889-5902
    Bourras D.. 2006. Comparison of five satellite-derived latent heat flux products to moored buoy data. J Climate, 19(24):6291-6313
    Bradley E F, Fairall C W, Hare J E, et al. 2000. An old and improved bulk algorithm for air-sea fluxes:COARE2.6a. In:AMS 14th Symposium on Boundary Layer and Turbulence. Aspen, CO:Amer Meteor Soc, 294–296
    Brunke M A, Fairall C W, Zeng Xubin, et al.. 2003. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?. J Climate, 16(4):619-635
    Castro S L, Wick G A, Emery W J.. 2012. Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite-derived reference products. J Geophys Res, 117(C2), doi: 10.1029/2011JC007472
    Chou S H, Nelkin E, Ardizzone J, et al.. 2003. Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J Climate, 16(20):3256-3273
    Chou S H, Shie C L, Atlas R M, et al.. 1997. Air-sea fluxes retrieved from special sensor microwave imager data. J Geophys Res, 102(C6):12706-12726
    Fairall C W, Bradley E F, Hare J E, et al.. 2003. Bulk parameterization of air-sea fluxes:updates and verification for the COARE algorithm. J Climate, 16(4):571-591
    Fairall C W, Bradley E F, Rogers D P, et al.. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res, 101(C2):3747-3764
    Fairall C W, White A B, Edson J B, et al.. 1997. Integrated shipboard measurements of the marine boundary layer. J Atmos Oceanic Technol, 14(3):338-359
    Freilich M H, Long D G, Spencer M W. 1994. SeaWinds:A scanning scatterometer for ADEOS Ⅱ-Science overview. Proc Int Geosci Remote Sens Symp, Vol Ⅱ. Pasadena, CA:IEEE, No. 94CH3378-7, 960–963
    Gaiser P W, St Germain K M, Twarog E M, et al.. 2004. The WindSat spaceborne polarimetric microwave radiometer:sensor description and early orbit performance. IEEE Trans Geosci Remote Sens, 42(11):2347-2361
    Godfrey J S, Houze R A Jr, Johnson R H, et al.. 1998. Coupled ocean-atmosphere response experiment (COARE):an interim report. J Geophys Res, 103(C7):14395-14450
    Jiang Chuanli, Cronin M F, Kelly K A, et al.. 2005. Evaluation of a hybrid satellite-and NWP-based turbulent heat flux product using tropical Atmosphere-Ocean (TAO) buoys. J Geophys Res, 110(C9), doi: 10.1029/2004JC002824
    Kubota M, Iwasaka N, Kizu S, et al.. 2002. Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J Oceanogr, 58(1):213-225
    McPhaden M J, Busalacchi A J, Cheney R, et al.. 1998. The tropical ocean-global atmosphere observing system:a decade of progress. J Geophys Res, 103(C7):14169-14240
    Mestas-Nuñez A M, Bentamy A, Katsaros K B.. 2006. Seasonal and El Niño variability in weekly satellite evaporation over the global ocean during 1996-98. J Climate, 19(10):2025-2035
    Raschke E, Meywerk J, Warrach K, et al.. 2001. The Baltic Sea experiment (BALTEX):a European contribution to the investigation of the energy and water cycle over a large drainage basin. Bull Amer Meteor Soc, 82(11):2389-2413
    Reynolds R W, Rayner N A, Smith T M, et al.. 2002. An improved in situ and satellite SST analysis for climate. J Climate, 15(13):1609-1625
    Reynolds R W, Smith T M, Liu Chunying, et al.. 2007. Daily high-resolution-blended analyses for sea surface temperature. J Climate, 20(22):5473-5496
    Smith S R, Legler D M, Verzone K V.. 2001. Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J Climate, 14(20):4062-4072
    Sun Bomin, Yu Lisan, Weller R A.. 2003. Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic:NWP model analyses versus moored buoy observations. J Climate, 16(4):679-695
    Wang Dongxiao, Zeng Lili, Li Xixi, et al.. 2013. Validation of satellite-derived daily latent heat flux over the South China Sea, compared with observations and five products. J Atmos Oceanic Technol, 30(8):1820-1832
    Webster P J, Lukas R.. 1992. TOGA COARE:the coupled ocean-atmosphere response experiment. Bull Amer Meteor Soc, 73(9):1377-1416
    Wentz F J.. 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res, 102(C4):8703-8718
    Wentz F J, Meissner T. 2000. Algorithm theoretical basis document (ATBD) version 2 AMSR ocean algorithm. Remote Sensing Systems Technical Report RSS 121599A.
    Yu Lisan, Jin Xiangze, Weller R A.. 2006. Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J Climate, 19(23):6153-6169
    Yu Lisan, Jin Xiangze, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project:latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech Rep OA-2008-01.
    Zhang Lei, Shi Hanqing, Du Huadong, et al.. 2016a. Comparison of WindSat and buoy-measured ocean products from 2004 to 2013. Acta Oceanologica Sinica, 35(1):67-78
    Zhang Lei, Shi Hanqing, Yu Hong, et al.. 2016b. WindSat satellite comparisons with nearshore buoy wind data near the U.S. west and east coasts. Acta Oceanologica Sinica, 35(7):50-58
    Zeng Lili, Shi Ping, Liu W T, et al.. 2009. Evaluation of a satellite-derived latent heat flux product in the South China Sea:a comparison with moored buoy data and various products. Atmos Res, 94(1):91-105
    Zeng Xubin, Zhao Ming, Dickinson R E.. 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate, 11(10):2628-2644
  • 加载中
计量
  • 文章访问数:  1131
  • HTML全文浏览量:  39
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-17

目录

    /

    返回文章
    返回