An available formula of the sandy beach state induced by plunging waves

JIANG Changbo WU Zhiyuan CHEN Jie DENG Bin LONG Yuannan LI Lianjie

蒋昌波, 伍志元, 陈杰, 邓斌, 隆院男, 李廉洁. 卷破波作用下沙质岸滩剖面形态判别式初探[J]. 海洋学报英文版, 2017, 36(9): 91-100. doi: 10.1007/s13131-017-1114-z
引用本文: 蒋昌波, 伍志元, 陈杰, 邓斌, 隆院男, 李廉洁. 卷破波作用下沙质岸滩剖面形态判别式初探[J]. 海洋学报英文版, 2017, 36(9): 91-100. doi: 10.1007/s13131-017-1114-z
JIANG Changbo, WU Zhiyuan, CHEN Jie, DENG Bin, LONG Yuannan, LI Lianjie. An available formula of the sandy beach state induced by plunging waves[J]. Acta Oceanologica Sinica, 2017, 36(9): 91-100. doi: 10.1007/s13131-017-1114-z
Citation: JIANG Changbo, WU Zhiyuan, CHEN Jie, DENG Bin, LONG Yuannan, LI Lianjie. An available formula of the sandy beach state induced by plunging waves[J]. Acta Oceanologica Sinica, 2017, 36(9): 91-100. doi: 10.1007/s13131-017-1114-z

卷破波作用下沙质岸滩剖面形态判别式初探

doi: 10.1007/s13131-017-1114-z
基金项目: The National Natural Science Foundation of China under contract Nos 51239001, 51179015, 51409022 and 51509023; the Hunan Provincial Innovation Foundation for Postgraduate under contract No. CX2015B348.

An available formula of the sandy beach state induced by plunging waves

  • 摘要: 通过波浪水槽实验,开展不同类型波浪作用下的沙质岸滩演化规律研究工作。本次实验研究不考虑比尺,采用1:10与1:20组成的复合沙质斜坡对岸滩进行概化,选取规则波和椭圆余弦波两种典型波浪作用,对波浪的传播、变形和破碎、上爬、回落过程以及波浪作用前后沙质岸滩床面地形进行了观测,探讨波浪作用下沙质岸滩剖面演化规律。本文实验工况中,规则波作用下,岸滩剖面呈现出沙坝剖面和滩肩剖面,椭圆余弦波作用下的岸滩剖面均呈滩肩形态,发现岸滩剖面形态不仅与波浪作用类型、强度、周期等因素相关,还与波浪破碎的强度等因素有关。通过对实验过程中现象的进行观察和分析,引入了卷破波水舌冲击角的概念。对波浪卷破破碎后形成的水流挟沙运动与岸滩剖面形态的关系进行定性分析,对水舌冲击角与Irribarren参数之间的关系进行定量分析,基于Irribarren参数与岸滩剖面形态的关系初步建立了波浪作用下沙质岸滩剖面形态判别关系式。通过本文实验结果和前人实验结果对趋势线进行拟合,求得其判别系数,判别式能够较好地划分淤积型岸滩、侵蚀型岸滩及过渡型岸滩三种岸滩形态。
  • Alsina J M, Cáceres I, Brocchini M, et al. 2012. An experimental study on sediment transport and bed evolution under different swash zone morphological conditions. Coastal Engineering, 68:31-43
    Alsina J M, Falchetti S, Baldock T E. 2009. Measurements and modelling of the advection of suspended sediment in the swash zone by solitary waves. Coastal Engineering, 56(5):621-631
    Bagnold R A. 1940. Beach formation by waves:some model experiments in a wave tank. (includes photographs). Journal of the Institution of Civil Engineers, 15(1):27-52
    Bagnold R A. 1963. Beach and nearshore processes. Part 1:Mechanics of marine sedimentation. The sea, 3(528):4188-4194
    Baldock T E, Alsina J A, Caceres I, et al. 2011. Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coastal Engineering, 58(2):214-227
    Baldock T E, Manoonvoravong P, Pham K S. 2010. Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups. Coastal Engineering, 57(10):898-916
    Battjes J A. 1974. Surf similarity, 14th International Conference on Coastal Engineering. Am Soc of Civ Eng, Copenhagen, 466-480
    Camenen B, Larson M. 2007. Predictive formulas for breaker depth index and breaker type. Journal of Coastal Research, 23(4):1028-1041
    Certain R, Barusseau J P. 2005. Conceptual modelling of sand bars morphodynamics for a microtidal beach (Sète, France). Bulletin de la Societe Geologique de France, 176(4):343-354
    Chen Jie, Huang Zhenhua, Jiang Changbo, et al. 2012. An experimental study of changes of beach profile and mean grain size caused by tsunami-like waves. Journal of Coastal Research, 28(5):1303-1312
    Dean R G. 1973. Heuristic models of sand transport in the surf zone. In:First Australian Conference on Coastal Engineering:Engineering Dynamics of the Coastal Zone. Australia:Institution of Engineers, 215.
    Dean R G. 1991. Equilibrium beach profiles:characteristics and applications. Journal of Coastal Research, 7(1):53-84
    Doering J C, Baryla A J. 2002. An investigation of the velocity field under regular and irregular waves over a sand beach. Coastal Engineering, 44(4):275-300
    Grasso F, Michallet H, Barthélemy E, et al. 2009. Physical modeling of intermediate cross-shore beach morphology:transients and equilibrium states. Journal of Geophysical Research:Oceans (1978–2012), 114(C9):C09001
    Günaydın K, Kabdaşlı M S. 2003a. The formation of offshore ripples in the zone under irregular waves. Ocean Engineering, 30(3):297-307
    Günaydın K, Kabdaşlı M S. 2003b. Characteristics of coastal erosion geometry under regular and irregular waves. Ocean Engineering, 30(13):1579-1593
    Guza R T, Inman D L. 1975. Edge waves and beach cusps. Journal of Geophysical Research:Oceans (1978-2012), 80(21):2997-3012
    Hughes M G, Aagaard T, Baldock T E. 2007. Suspended sediment in the swash zone:heuristic analysis of spatial and temporal variations in concentration. Journal of Coastal Research, 23(6):1345-1354
    Jackson N L, Masselink G, Nordstrom K F. 2004. The role of bore collapse and local shear stresses on the spatial distribution of sediment load in the uprush of an intermediate-state beach. Marine Geology, 203(1):109-118
    Jiang Changbo, Wu Zhiyuan, Chen Jie, et al. 2015. Sorting and sedimentology character of sandy beach under wave action. Procedia Engineering, 116:771-777
    Johnson J W. 1949. Scale effects in hydraulic models involving wave motion. Transactions, American Geophysical Union, 30(4):517-525
    Kajima R, Shimizu T, Maruyama K, et al. 1982. Experiments on beach profile change with a large wave flume. Coastal Engineering:1385-1404.
    Kaneko A. 1985. Formation of beach cusps in a wave tank. Coastal Engineering, 9(1):81-98
    Kobayashi N, Lawrence A R. 2004. Cross-shore sediment transport under breaking solitary waves. Journal of Geophysical Research:Oceans (1978–2012), 109(C3):C03047
    Longuet-Higgins M S. 1982. Parametric solutions for breaking waves. Journal of Fluid Mechanics, 121:403-424
    Masselink G, Russell P, Turner I, et al. 2009. Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Marine Geology, 267(1):18-35
    Mead S, Black K. 2001. Predicting the breaking intensity of surfing waves. Journal of Coastal Research, 17 (special issue 29):51-65
    Mimura N, Otsuka Y, Watanabe A. 1987. Laboratory study on two-dimensional beach transformation due to irregular waves. Coastal Engineering 1986:1393-1406
    Nielsen P. 1992. Coastal bottom boundary layers and sediment transport. In:Liu C, Philip LF, eds. Advanced Series on Ocean Engineering. Singapore:World Scientific
    Noda E K. 1972. Equilibrium beach profile scale-model relationship. Journal of the Waterways, Harbors and Coastal Engineering Division, 98(4):511-528
    Paul M J, Kamphuis J W, Brebner A. 1973. Similarity of equilibrium beach profiles. Coastal Engineering 1972:1217-1236
    Pritchard D, Hogg A J. 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering, 52(1):1-23
    Reniers A, Roelvink D, Dongeren A. 2001. Morphodynamic response to wave group forcing. Coastal Engineering 2000:3218-3228
    Robertson B, Hall K. 2013. Wave Vortex Parameters as an Indicator of Breaking Intensity. Proceedings of World Academy of Science, Engineering and Technology. World Academy of Science, Engineering and Technology (WASET),(73):576
    Roelvink J A, Reniers A J H M. 1995. LIP 11D Delta Flume experiments:a dataset for profile model validation. Report H2130. Netherlands:WL/Delft Hydraulics
    Sunamura T, Horikawa K. 1975. Two dimensional beach transformation due to waves. Coastal Engineering 1974:920–938.
    Tzang S Y, Chen Y L, Ou S H. 2011. Experimental investigations on developments of velocity field near above a sandy bed during regular wave-induced fluidized responses. Ocean Engineering, 38(7):868-877
    Van Hijum E. 1975. Equilibrium profiles of coarse material under wave attack.Coastal Engineering 1974:939–957.
    Wright L D, Short A D. 1984. Morphodynamic variability of surf zones and beaches:a synthesis. Marine Geology, 56(1):93-118
    Wright L D, Thom B G. 1977. Coastal depositional landforms:a morphodynamic approach. Progress in Physical Geography, 1(3):412-459
    Xu Xiao. 1988. Types of two-dimension sandy beaches and their criterion. The Ocean Engineering (in Chinese), 6(4):51-62
    Yamaguchi N, Sekiguchi H. 2011. Variability of wave-induced ripple migration in wave-flume experiments and its implications for sediment transport. Coastal Engineering, 58(8):671-677
    Young Y L, Xiao Heng, Maddux T. 2010. Hydro-and morpho-dynamic modeling of breaking solitary waves over a fine sand beach Part I Experimental study. Marine Geology, 269(3–4):107-118
  • 加载中
计量
  • 文章访问数:  932
  • HTML全文浏览量:  45
  • PDF下载量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14

目录

    /

    返回文章
    返回