Seasonal and inter-annual variations of Arctic cyclones and their linkage with Arctic sea ice and atmospheric teleconnections

WEI Lixin QIN Ting LI Cheng

魏立新, 秦听, 李珵. 北极气旋的季节、年际变化及其与北极海冰、大气遥相关的关系[J]. 海洋学报英文版, 2017, 36(10): 1-7. doi: 10.1007/s13131-017-1117-9
引用本文: 魏立新, 秦听, 李珵. 北极气旋的季节、年际变化及其与北极海冰、大气遥相关的关系[J]. 海洋学报英文版, 2017, 36(10): 1-7. doi: 10.1007/s13131-017-1117-9
WEI Lixin, QIN Ting, LI Cheng. Seasonal and inter-annual variations of Arctic cyclones and their linkage with Arctic sea ice and atmospheric teleconnections[J]. Acta Oceanologica Sinica, 2017, 36(10): 1-7. doi: 10.1007/s13131-017-1117-9
Citation: WEI Lixin, QIN Ting, LI Cheng. Seasonal and inter-annual variations of Arctic cyclones and their linkage with Arctic sea ice and atmospheric teleconnections[J]. Acta Oceanologica Sinica, 2017, 36(10): 1-7. doi: 10.1007/s13131-017-1117-9

北极气旋的季节、年际变化及其与北极海冰、大气遥相关的关系

doi: 10.1007/s13131-017-1117-9

Seasonal and inter-annual variations of Arctic cyclones and their linkage with Arctic sea ice and atmospheric teleconnections

  • 摘要: 本文采用英国雷丁大学的一套气旋自动追踪方案,利用欧洲中心ERA-interim 34年的逐6小时海平面气压再分析数据,对北极气旋的季节和年际变化进行了统计分析。北极气旋数量冬季最多,春季最少而不是在夏季,但存在年际差异;夏季有50%左右的气旋是在70°N以南生成移入到北极地区的;北极气旋个数的季节和年际变化明显,但是1979-2012年间的线性变化趋势不显著。夏季气旋的活动范围最广,并且在CRU区域(俄罗斯中心区)气旋密度的增加达到了显著水平,而该区域冬季是极区最大的气旋路径密度区,有减少的趋势。气旋路径密度与同期大气环流指数及前期海冰指数的回归分析表明,极地气旋活动与北极涛动(AO)、北大西洋涛动(NAO)、太平洋-北美型(PNA)等大尺度环流有着密切的联系,在有些区域,与前期的海冰面积也有着显著地关联。
  • Blackmon M L. 1976. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. Journal of the Atmospheric Sciences, 33(8):1607-1623
    Comiso J C, Parkinson C L, Gersten R, et al,. 2008. Accelerated decline in the arctic sea ice cover. Geophysical Research Letters, 35(1):179-210
    Gulev S K, Zolina O, Grigoriev S. 2001. Extratropical cyclone variability in the Northern Hemisphere winter from NCEP/NCAR reanalysis data. Climate Dynamics, 17(10):795-809
    Hodges K I. 1994. A general method for tracking analysis and its application to meteorological data. Monthly Weather Review, 122(11):2573-2586
    Hodges K I. 1996. Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Monthly Weather Review, 124(12):2914-2932
    Hoskins B J,Hodges K I. 2005. A new perspective on the Southern Hemisphere winter storm tracks. Journal of Climate, 18(20):4108-4129
    Julienne C S, Mark C S, Andrew B, et al. 2011. Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus A, 63:10.1111/tea.2011.63. issue-4:653-663
    Leckebusch G C, Ulbrich U. 2004. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global & Planetary Change, 44(1):181-193
    Mesquita M D, Hodges K I, Atkinson D E, et al. 2009. Sea-ice Changes in the Sea of Okhotsk:Relationship with Northern Hemisphere Storm Tracks. San Francisco, CA:American Geophysical Union, Fall Meeting 2009 Abstract.
    Notaro M, Wang W C, Gong, W. 2006. Model and observational analysis of the northeast US regional climate and its relationship to the PNA and NAO patterns during early winter.Monthly Weather Review, 134:3479-3505
    Orsolini Y J, Sorteberg A. 2009. Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model. Atmospheric and Oceanic Science Letters, 2(1):62-67
    Pinto J G, Spangehl T, Ulbrich U, et al. 2006. Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorologische Zeitschrift, 15(3):279-291
    Serreze M C. 1995. Climatological aspects of cyclone development and decay in the arctic. Atmosphere-Ocean, 33(1):1-23
    Serreze M C, Barrett A P. 2008. The summer cyclone maximum over the central Arctic Ocean. Atmosphere-Ocean, 33(1):1-23
    Serreze M C, Barry R G. 1988. Synoptic activity in the Arctic Basin, 1979-1985. Journal of Climate, 1:1276-1295
    Screen J A, Simmonds I. 2011. Erroneous Arctic temperature trends in the ERA-40 reanalysis:a closer look. Journal of Climate, 24(10):2620-2627
    Simmonds I, Burke C, Keay K. 2008. Arctic climate change as manifest in cyclone behavior. Journal of Climate, 21(22):5777-5796
    Simmonds I, Keay K. 2009. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979-2008. Geophysical Research Letters, 36(19):158-168
    Simmonds I, Rudeva I. 2014. A comparison of tracking methods for extreme cyclones in the Arctic Basin. Tellus A,66,25252
    Sorteberg A, Walsh J E. 2008. Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A:570-586
    Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline:faster than forecast. Geophysical Research Letters, 34(9):529-536
    Ulbrich U, Christoph M. 1999. A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dynamics, 15(7):551-559
    Uotila P, Vihma T, Pezza A B, et al. 2011. Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. Journal of Geophysical Research:Atmospheres, 116(D7):D07109
    Wang X L, Swail V R, Zwiers F W. 2006. Climatology and changes of extratropical cyclone activity:comparison of ERA-40 with NCEP-NCAR reanalysis for 1958-2001. Journal of Climate, 19(13):3145
    Wei L, Qin T. 2016. Characteristics of cyclone climatology and variability in the Southern Ocean. Acta Oceanologica Sinica, 35(7):59-67
    Zhang X, Walsh J E, Zhang J. 2004. Climatology and interannual variability of Arctic cyclone activity:1948-2002. Journal of Climate, 17:2300-2317
  • 加载中
计量
  • 文章访问数:  1399
  • HTML全文浏览量:  82
  • PDF下载量:  1098
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-27

目录

    /

    返回文章
    返回