Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone

DAI Haijin CUI Jian YU Jingping

戴海瑨, 崔健, 于靖平. 再谈海冰边缘区域中尺度涡旋形成机制——非线性平流[J]. 海洋学报英文版, 2017, 36(11): 14-20. doi: 10.1007/s13131-017-1134-8
引用本文: 戴海瑨, 崔健, 于靖平. 再谈海冰边缘区域中尺度涡旋形成机制——非线性平流[J]. 海洋学报英文版, 2017, 36(11): 14-20. doi: 10.1007/s13131-017-1134-8
DAI Haijin, CUI Jian, YU Jingping. Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone[J]. Acta Oceanologica Sinica, 2017, 36(11): 14-20. doi: 10.1007/s13131-017-1134-8
Citation: DAI Haijin, CUI Jian, YU Jingping. Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone[J]. Acta Oceanologica Sinica, 2017, 36(11): 14-20. doi: 10.1007/s13131-017-1134-8

再谈海冰边缘区域中尺度涡旋形成机制——非线性平流

doi: 10.1007/s13131-017-1134-8

Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone

  • 摘要: 利用三维海洋模式与二维海冰模式耦合,研究海冰边缘区域中尺度涡旋形成最重要的机制之一——非线性平流机制。二维海洋模型模拟结果表明,非线性平流机制在水深比较浅的时候更加重要。不同于把海洋考虑成一个正压流体的二维模型,三维海洋模型中海冰通过海-冰相互作用直接影响海洋表层。我们发现在三维海洋模型实验中,中尺度涡旋和海洋表面抬升都对水深变化敏感。海流速度的垂直结构表面,当海水变浅,各层海流都变得更快。相同风应力作用相同时间之后,表面抬升与海水深度成反比关系。同时我们还发现由于垂直运动,在三维海洋模型实验结果中,海面抬升非常小,只有二维海洋模型实验结果的1%。垂直运动是三维海洋模型和二维海洋模型实验结果不同的根本原因。
  • Dumont D, Kohout A, Bertino L. 2011. A wave-based model for the marginal ice zone including a floe breaking parameterization. J Geophys Res, 116(C4), doi: 10.1029/2010JC006682
    Gula J, Molemaker M J, McWilliams J C. 2015. Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys Res Lett, 42(10):4054-4062
    Häkkinen S. 1986. Coupled ice-ocean dynamics in the marginal ice zones:upwelling/downwelling and eddy generation. J Geophys Res, 91(C1):819-832
    Hibler W D Ⅲ. 1979. A dynamic thermodynamic sea ice model. J Phys Oceanogr, 9(4):815-846
    Hunke E C, Dukowicz J K. 1997. An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr, 27(9):1849-1867
    Hunke E C, Zhang Y. 1999. A comparison of sea ice dynamics models at high resolution. Mon Wea Rev, 127(3):396-408
    Johannessen J A, Johannessen O M, Svendsen E, et al. 1987. Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. J Geophys Res, 92(C7):6754-6772
    Johannessen O M, Johannessen J A, Svendsen E, et al. 1987. Ice-edge eddies in the Fram Strait marginal ice zone. Science, 236(4800):427-429
    Lane E M, Restrepo J M, McWilliams J C. 2007. Wave-current interaction:a comparison of radiation-stress and vortex-force representations. J Phys Oceanogr, 37(5):1122-1141
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing:a review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32(4):363-403
    Lemarié F, Kurian J, Shchepetkin A F, et al. 2012. Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models?.. Ocean Modell, 42:57-79
    Liu A K, Häkkinen S, Peng C Y. 1993. Wave effects on ocean-ice interaction in the marginal ice zone. J Geophys Res, 98(C6):10025-10036
    Liu A K, Holt B, Vachon P W. 1991. Wave propagation in the marginal ice zone:model predictions and comparisons with buoy and synthetic aperture radar data. J Geophys Res, 96(C3):4605-4621
    Liu A K, Mollo-Christensen E. 1988. Wave propagation in a solid ice pack. J Phys Oceanogr, 18(11):1702-1712
    McPhee M G. 1975. Ice-ocean momentum transfer for the adjex ice model. ADJEX Bull, 29:93-111
    McWilliams J C, Restrepo J M, Lane E M. 2004. An asymptotic theory for the interaction of waves and currents in coastal waters. J Fluid Mech, 511:135-178
    Røed L P, O'Brien J J. 1983. A coupled ice-ocean model of upwelling in the marginal ice zone. J Geophys Res, 88(C5):2863-2872
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell, 9(4):347-404
    Squire V A. 2007. Of ocean waves and sea-ice revisited. Cold Reg Sci Technol, 49(2):110-133
    Squire V A, Dugan J P, Wadhams P, et al. 1995. Of ocean waves and sea ice. Annu Rev Fluid Mech, 27(1):115-168
    Uchiyama Y, McWilliams J C, Shchepetkin A F. 2011. Wave-current interaction in an oceanic circulation model with a vortex-force formalism:application to the surf zone. Ocean Model, 34(1–2):16-35
    Wadhams P, Holt B. 1991. Waves in frazil and pancake ice and their detection in Seasat synthetic aperture radar imagery. J Geophys Res, 96(C5):8835-8852
    Wadhams P, Parmiggiani F, de Carolis G. 2002. The use of SAR to measure ocean wave dispersion in frazil-pancake icefields. J Phys Oceanogr, 32(6):1721-1746
    Wadhams P, Squire V A, Goodman D J, et al. 1988. The attenuation rates of ocean waves in the marginal ice zone. J Geophys Res, 93(C6):6799-6818
    Williams T D, Bennetts L G, Squire V A, et al. 2013a. Wave-ice interactions in the marginal ice zone:Part 1. Theoretical foundations. Ocean Modell, 71:81-91
    Williams T D, Bennetts L G, Squire V A, et al. 2013b. Wave-ice interactions in the marginal ice zone:Part 2. Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modell, 71:92-101
    Yang Haijun, Dai Haijin. 2015. Effect of wind forcing on the meridional heat transport in a coupled climate model:equilibrium response. Climate Dyn, 45(5–6):1451-1470
  • 加载中
计量
  • 文章访问数:  1888
  • HTML全文浏览量:  53
  • PDF下载量:  813
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-05-04

目录

    /

    返回文章
    返回