A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model

ZHANG Zeguo YIN Jianchuan WANG Nini HU Jiangqiang WANG Ning

张泽国, 尹建川, 王妮妮, 胡江强, 王宁. 基于调和分析法与ANFIS系统的综合潮汐预报模型[J]. 海洋学报英文版, 2017, 36(11): 94-105. doi: 10.1007/s13131-017-1140-x
引用本文: 张泽国, 尹建川, 王妮妮, 胡江强, 王宁. 基于调和分析法与ANFIS系统的综合潮汐预报模型[J]. 海洋学报英文版, 2017, 36(11): 94-105. doi: 10.1007/s13131-017-1140-x
ZHANG Zeguo, YIN Jianchuan, WANG Nini, HU Jiangqiang, WANG Ning. A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model[J]. Acta Oceanologica Sinica, 2017, 36(11): 94-105. doi: 10.1007/s13131-017-1140-x
Citation: ZHANG Zeguo, YIN Jianchuan, WANG Nini, HU Jiangqiang, WANG Ning. A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model[J]. Acta Oceanologica Sinica, 2017, 36(11): 94-105. doi: 10.1007/s13131-017-1140-x

基于调和分析法与ANFIS系统的综合潮汐预报模型

doi: 10.1007/s13131-017-1140-x

A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model

  • 摘要: 港口沿岸地区以及河流入海口等地区的精确潮汐预报对于各种海洋工程作业有着非常重要的意义。潮汐水位的变化受到众多复杂因素的影响,而且这些复杂的因素往往有着较强的实变性和非线性。为了进一步提高沿岸港口码头等水域的潮汐水位的预测精度,本文提出了一种基于调和分析模型与自适应神经模糊推理系统相结合的模块化潮汐水位预测模型;并采用相关分析确定整个预测模型的输入维数;模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。其中调和分析法用于天文潮部分的预测,ANFIS用于预测具有较强非线性的非文潮部分。模块化综合了两种方法的优势,即调和分析法能够实现长期、稳定的天文潮预报,ANFIS能够以较高的精度实现潮汐非线性拟合与预测。模型使用ANFIS模型和调和分析模型分别对潮汐的非天文潮和天文潮部分进行仿真预测,然后将两部分的预测结果综合形成最终的潮汐预测值。此外,本文选用三种不同的模糊规则生成方法(grid partition (GP),fuzzy c-means (FCM) and sub-clustering (SC))生成完整的ANFIS系统,并使用实测数据进行验证用以选取最优的ANFIS预测模型。最后将最优的ANFIS模型与调和分析模型相结合进行潮汐水位的最终预报。仿真实验选用Fort Pulaski潮汐观测站的实测潮汐值数据进行预报的仿真实验,仿真结果验证了该模型的可行性与有效性并取得了良好的效果,具有较高的预报精度。
  • Cakmakci M. 2007. Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess and Biosystems Engineering, 30(5):349-357
    Chang F J, Lai H C. 2014. Adaptive neuro-fuzzy inference system for the prediction of monthly shoreline changes in northeastern Taiwan. Ocean Engineering, 84:145-156
    Chiu S L. 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology, 2(3):267-278
    Clue V. 2004. Harmonic analysis. In:Proceedings of the 2004 IEEE Electro/Information Technology Conference. Milwaukee USA, 53-58
    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. 1986. Analysis and Prediction of Tide and Tidal Currents (in Chinese). Beijing:China Ocean Press, 1-20
    Günaydın K. 2008. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Engineering, 35(14–15):1406-1415
    Haykin S S. 1999. Neural Networks:A Comprehensive Foundation,:33-102
    He Shijun, Zhou Wenjun, Zhou Ruyan, et al. 2012. Study of tide prediction method influenced by nonperiodic factors based on support vector machines. Acta Oceanologica Sinica, 31(5):160-164
    Huang Wenrui, Murray C, Kraus N, et al. 2003. Development of a regional neural network for coastal water level predictions. Ocean Engineering, 30(17):2275-2295
    Jain P, Deo M C. 2007. Real-time wave forecasts off the western Indian coast. Applied Ocean Research, 29(1–2):72-79
    Jang J S R. 1993. ANFIS:adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665-685
    Jang J S R, Sun C T. 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3):378-406
    Lee T L. 2004. Back-propagation neural network for long-term tidal predictions. Ocean Engineering, 31(2):225-238
    Lee T L. 2006. Neural network prediction of a storm surge. Ocean Engineering, 33(3–4):483-494
    Lee T L. 2008. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence, 21(1):63-72
    Lee T L, Jeng D S. 2002. Application of artificial neural networks in tide-forecasting. Ocean Engineering, 29(9):1003-1022
    Lin Chunsheng, Deng Daxin, Ren Dekui. 2004. Adaptive AR model prediction filtering for ship hydraulic pressure signal on wind wave background. Haiyang Xuebao (in Chinese), 26(4):133-138
    Lu Xiaopeng, Ye Qingwei, L Cuilan. 2015. Tidal current prediction based on the sparse AR model. Journal of Marine Sciences, 33(2):14-18
    Mabrouk A B, Abdallah N B, Dhifaoui Z. 2008. Wavelet decomposition and autoregressive model for time series prediction. Applied Mathematics and Computation, 199(1):334-340
    Mekanik F, Imteaz M A, Talei A. 2016. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Climate Dynamics, 46(9-10):3097-3111
    Nezlin N P, Li Bailian. 2003. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica-San Pedro Basin off Southern California. Journal of Marine Systems, 39(3-4):185-202
    Ruano A E. 2005. Intelligent Control Systems Using Computational Intelligence Techniques,:219-252
    Stefanakos C. 2016. Fuzzy time series forecasting of nonstationary wind and wave data. Ocean Engineering, 121:1-12
    Takagi T, Sugeno M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1):116-132
    Xiao Bin, Qiao Fangli, Shu Qi. 2016. The performance of a z-level ocean model in modeling the global tide. Acta Oceanologica Sinica, 35(11):35-43
    Yetilmezsoy K, Özkaya B, Cakmakcı M. 2011. Artificial intelligence-based prediction models for environmental engineering. Neural Network World, 21(3):193-218
    Yin Jianchuan, Wang Nini. 2013. Online grey prediction of ship roll motion using variable RBFN. Applied Artificial Intelligence, 27(10):941-960
    Yin Jianchuan, Wang Nini. 2015. A variable multidimensional fuzzy model and its application to online tidal level prediction. Journal of Computational and Theoretical Nanoscience, 12(7):1384-1394
    Yin Jianchuan, Wang Nini. 2016. An online sequential extreme learning machine for tidal prediction based on improved Gath-Geva fuzzy segmentation. Neurocomputing, 174:85-98
    Yin Jianchuan, Zou Zaojian, Xu Feng. 2013. Sequential learning radial basis function network for real-time tidal level predictions. Ocean Engineering, 57:49-55
    Yin Jianchuan, Zou Zaojian, Xu Feng, et al. 2014. Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing, 129:168-174
    Young P, Shellswell S. 1972. Time series analysis, forecasting and control. IEEE Transactions on Automatic Control, 17(2):281-283
    Zhao Yingjie, Li Mingchang, Li Guanglou, et al. 2014. Time series correlation analysis of pollution in marine environment waters. Applied Mechanics and Materials, 522-524:52-55
  • 加载中
计量
  • 文章访问数:  1334
  • HTML全文浏览量:  97
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-25
  • 修回日期:  2017-03-21

目录

    /

    返回文章
    返回