Accelerated recruitment of copepod Calanus hyperboreus in pelagic slope waters of the western Arctic Ocean

XU Zhiqiang ZHANG Guangtao SUN Song

徐志强, 张光涛, 孙松. 西北冰洋陆坡区极北哲水蚤种群快速补充研究[J]. 海洋学报英文版, 2018, 37(5): 87-95. doi: 10.1007/s13131-018-1166-8
引用本文: 徐志强, 张光涛, 孙松. 西北冰洋陆坡区极北哲水蚤种群快速补充研究[J]. 海洋学报英文版, 2018, 37(5): 87-95. doi: 10.1007/s13131-018-1166-8
XU Zhiqiang, ZHANG Guangtao, SUN Song. Accelerated recruitment of copepod Calanus hyperboreus in pelagic slope waters of the western Arctic Ocean[J]. Acta Oceanologica Sinica, 2018, 37(5): 87-95. doi: 10.1007/s13131-018-1166-8
Citation: XU Zhiqiang, ZHANG Guangtao, SUN Song. Accelerated recruitment of copepod Calanus hyperboreus in pelagic slope waters of the western Arctic Ocean[J]. Acta Oceanologica Sinica, 2018, 37(5): 87-95. doi: 10.1007/s13131-018-1166-8

西北冰洋陆坡区极北哲水蚤种群快速补充研究

doi: 10.1007/s13131-018-1166-8
基金项目: The National Natural Science Foundation of China under contract No. 40406002; the Public Science and Technology Research Funds Projects of Ocean under contract No. 201105022.

Accelerated recruitment of copepod Calanus hyperboreus in pelagic slope waters of the western Arctic Ocean

  • 摘要: 在北冰洋的高纬度海区,陆坡—海盆之间的交换对极北哲水蚤(Calanus hyperboreus)的种群补充具有非常重要的意义。为了研究极北哲水蚤在西北冰洋种群补充的地理差异,我们利用2003年夏季所采集的样品,分析了该物种的丰度、种群结构和体长分布。从总丰度的地理分布来看,极北哲水蚤主要分布在楚科奇海与楚科奇深海平原之间的陆坡区(CS-slope),而在水深较浅的楚科奇海并没有记录。在CS-slope区域,极北哲水蚤的总丰度在1 110.0—5 815.0个/m3之间,而其他海区的总丰度在40.0—950.0个/m3之间。从不同的发育期分布上来看,早期幼体(CI-CIV)在CS-slope区域占优势,而CV期幼体和成体在深水海盆区占优势。从体长的地理分布上来看,差异最为明显的是CⅢ期幼体,其在CS-slope区域的前体长在2.48—2.61 mm之间,而在其他海区的前体长在2.16—2.37 mm之间。与环境因子相关性的分析结果显示,早期幼体(CI-CIV)的丰度与叶绿素a的浓度呈正相关关系,而CV期幼体和成体却与叶绿素a的浓度呈负相关关系。我们的结果表明,极北哲水蚤可以通过加快第一个生长季节的发育速度而受益于初级生产力的增加,并且高生产力的CS-slope区域是陆坡-海盆之间种群补充的潜在来源。
  • Aksenov Y, Ivanov V V, Nurser A J G, et al. 2011. The arctic circumpolar boundary current. J Geophys Res, 116(C9):C09017
    Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under arctic sea ice. Science, 336(6087):1408
    Ashjian C J, Campbell R G, Welch H E, et al. 2003. Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean. Deep Sea Res Part I Oceanogr Res Pap, 50(10-11):1235-1261
    Brodskii K A, Nikitin M N. 1955. Hydrobiological work. In:Observational Data of the Scientific Research Drifting Station of 1950-1951. Vol 1. Massachusetts:American Meteorological Society, 404-410
    Broms C, Melle W, Kaartvedt S. 2009. Oceanic distribution and life cycle of Calanus species in the Norwegian Sea and adjacent waters. Deep Sea Res Part Ⅱ Top Stud Oceanogr, 56(21-22):1910-1921
    Conover R J. 1967. Reproductive cycle, early development, and fecundity in laboratory populations of the copepod Calanus hyperboreus. Crustaceana, 13(1):61-72
    Conover R J. 1988. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. In:Boxshall G A, Schminke H K, eds. Biology of Copepods. Dordrecht:Springer, 127-142
    Conover R J, Siferd T D. 1993. Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic, 46(4):303-311
    Dawson J K. 1978. Vertical distribution of Calanus hyperboreus in the central Arctic Ocean. Limnol Oceanogr, 23(5):950-957
    Grebmeier J M, Smith W O Jr, Conover R J. 1995. Biological processes on Arctic continental shelves:ice-ocean-biotic interactions. In:Smith W O, Grebmeir J M, eds. Arctic Oceanography:Marginal Ice Zones and Continental Shelves. Washington DC:American Geophysical Union, 231-262
    Hirche H J. 1997. Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Mar Biol, 128(4):607-618
    Hirche H J, Hagen W, Mumm N, et al. 1994. The northeast water polynya, Greenland Sea:Ⅲ. Meso- and macrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol, 14(7):491-503
    Hirche H J. 2013. Long-term experiments on lifespan, reproductive activity and timing of reproduction in the Arctic copepod Calanus hyperboreus. Mar Biol, 160(9):2469-2481
    Hopcroft R R, Kosobokova K N, Pinchuk A I. 2010. Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep Sea Res Part Ⅱ Top Stud Oceanogr, 57(1-2):27-39
    Hunt B P V, Nelson R J, Williams B, et al. 2014. Zooplankton community structure and dynamics in the Arctic Canada basin during a period of intense environmental change (2004-2009). J Geophys Res, 119(4):2518-2538
    Huntley M. 1981. Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. Limnol Oceanogr, 26(5):831-842
    Ji Rubao, Ashjian C J, Campbell R G, et al. 2012. Life history and biogeography of Calanus copepods in the Arctic Ocean:an individual-based modeling study. Prog Oceanogr, 96(1):40-56
    Johnson M W. 1963. Zooplankton collections from the high polar basin with special reference to the Copepoda. Limnol Oceanogr, 8(1):89-102
    Kosobokova K, Hirche H J. 2009. Biomass of zooplankton in the eastern Arctic Ocean—A base line study. Prog Oceanogr, 82(4):265-280
    Lane P V Z, Llinás L, Smith S L, et al. 2008. Zooplankton distribution in the western Arctic during summer 2002:hydrographic habitats and implications for food chain dynamics. J Mar Syst, 70(1-2):97-133
    Li Song, Fang Jinchuan. 1990. Copepodites of Planktonic Copepod in China Seas (in Chinese). Bejing:China Ocean Press
    Llinás L, Pickart R S, Mathis J T, et al. 2009. Zooplankton inside an Arctic Ocean cold-core eddy:probable origin and fate. Deep Sea Res Ⅱ Top Stud Oceanogr, 56(17):1290-1304
    Madsen S D, Nielson T G, Hansen B W. 2001. Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland. Mar Biol, 139(1):75-93
    Manley T O, Hunkins K. 1985. Mesoscale eddies of the Arctic Ocean. J Geophys Res, 90(C3):4911-4930
    Marshall S 慍氬?摏楲獲琠牁椠扐甮琠椱漹渵‵漮映??楥??慩汯慬湯畧獹?桯祦瀠敡爠才潡牲敩畮獥??楯????潤瀠攼灩漾摃慡??楮湵?琠桦敩??敡湲瑣牨慩汣??爼振瑩椾挠??慵獮楮湥??佳挩攮愠湅潤汩潮杢祵?????????????扤爠?卯浹楤琬栠?匭????卢捲栾湍慥捬歬?匠捗栬椠敓汫?卯????ㄠ??げ??倱漹氹愸爮?穒潥潰灲汯慤湵正瑴潩湯???湮?匠浤楥瑶桥?坯?佭??牴??敦搠??倾潃污慬牡?併捳攠慦湩潮杭牡慲灣桨祩??偳愼爯瑩 ̄???桩放浃椮猠瑧牬祡???楬潩汳漼术祩 ̄愠湡摮??攼潩氾潃朮礠??买敥睲?奯潲牥歵??振慩搾攠浩楮挠?偨牥攠獂獡??????????戠牍?卲眠慅汣敯瑬栠潐牲灯?删???樬攠氱氶改爺甲瀱?匭?′???????湥睮散扨攠牒????敇瑵?慮氠????ㄠ????牬慥穤楧湥朠??故本朠?灴爠潡摬甮挠琲椰漰渰??慁湮搠?扲楣潴捩档攠浏楣捥慡汮?散癯楬摤攠湣捯敲?漠晥?摤楹昮映敊爠敇湥捯数獨?楳渠?瑥桳攬?氱椰昵攨?猱琰爩愺琲攳朹椹攷猭′漴昰‰?椼??愾汍慵湮畤獹?晃椠湊洬愠片捯桳楳捥畬獩??楍????楮????来汴愠捡楬愮氠椲猰??椮??慯湮摴??楢????桮礠灯敦爠扵潮牤敥畲猭??楥??楲湩??楲獹欠潰??慤祵??睩敯獮琠整牯渠??爠敩散湥氭慥湤摧???慰牷??捬潩汮?倠牰潨杹?卯数牬??????ㄠ???????扮爠?周慥渠权???坤??乮椠敂汥獡敵湦?呲?????甮渠歇?偯??敹瑳?慒汥???づ?????收琨愱稷漩漺灌氱愷渶欰琱漼湢?挾潎浩浳畨湩楮瑯礠?猬琠牓畨捩瑭畡牤敡??昬攠敉摴楯湨朠?爬愠瑥整?敡獬琮椠洲愰琰攸献??慡湳摴?桷祥摳牴漠杤物慦灦桥祲?楮湣?慳?浩敮氠瑷睡慴瑥敲爠?楡湳晳氬甠敮湵捴敲摩??牴攬攠湡汮慤渠摣楨捬?晲橯潰牨摹???愼物 ̄?挼漯汩 ̄倠牤潩杳?卲敩牢??????????ぴ?扥爠?呥桡漠物?健??乥楤敵汣獴敩湯?吠????呯楮猠敯汦椠畴獨?倠???ぴづ????潲牣瑴慩汣椠瑏祣?牡慮琮攠獊?潇晥?数灨楹灳攠汒慥杳椬挠?挱漳瀨敃瀱漩携獃‰椰湁‰琱格敢?瀾潎獩瑳?獩灮牯椠湓本?扉汴潯潨洠?瀬攠牋楡潷摡?極湣??椠獙欬漠??愠祡??眠攲猰琱攱爮渠??牰敡散湴氠慯湦搠???慵牮??捵潡汬?偹爠潬条?卧敥爠????????????つy on distributions of nutrients and phytoplankton in the southwestern Canada Basin during late summer/early fall 2010. Geophys Res Lett, 38(16):L16602
    Olli K, Wassmann P, Reigstad M, et al. 2007. The fate of production in the central Arctic Ocean—top-down regulation by zooplankton expatriates?.. Prog Oceanogr, 72(1):84-113
    Ota Y, Hattori H, Makabe R, et al. 2008. Seasonal changes in nauplii and adults of Calanus hyperboreus (Copepoda) captured in sediment traps, Amundsen Gulf, Canadian Arctic. Polar Sci, 2(3):215-222
    Parkinson C L, Cavalieri D J. 2008. Arctic sea ice variability and trends, 1979-2006. J Geophys Res, 113(C7):C07003
    Plourde S, Joly P, Runge J A, et al. 2003. Life cycle of Calanus hyperboreus in the lower St. Lawrence Estuary and its relationship to local environmental conditions. Mar Ecol Prog Ser, 255:219-233
    Ringuette M, Fortier L, Fortier M, et al. 2002. Advanced recruitment and accelerated population development in Arctic calanoid copepods of the North Water. Deep Sea Res Ⅱ Top Stud Oceanogr, 49(22-23):5081-5099
    Rudyakov Y A. 1983. Vertic
  • 加载中
计量
  • 文章访问数:  751
  • HTML全文浏览量:  41
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 修回日期:  2016-04-07

目录

    /

    返回文章
    返回