Enhanced a novel β-agarase production in recombinant Escherichia coli BL21 (DE3) through induction mode optimization and glycerol feeding strategy

CHAN Zhuhua CHEN Xinglin HOU Yanping GAO Boliang ZHAO Chungui YANG Suping ZENG Runying

产竹华, 陈兴麟, 侯艳平, 高波良, 赵春贵, 杨素萍, 曾润颖. 一种诱导模式和甘油补料优化策略提高重组大肠杆菌BL21(DE3)β-琼胶酶的产量[J]. 海洋学报英文版, 2018, 37(2): 110-118. doi: 10.1007/s13131-018-1172-x
引用本文: 产竹华, 陈兴麟, 侯艳平, 高波良, 赵春贵, 杨素萍, 曾润颖. 一种诱导模式和甘油补料优化策略提高重组大肠杆菌BL21(DE3)β-琼胶酶的产量[J]. 海洋学报英文版, 2018, 37(2): 110-118. doi: 10.1007/s13131-018-1172-x
CHAN Zhuhua, CHEN Xinglin, HOU Yanping, GAO Boliang, ZHAO Chungui, YANG Suping, ZENG Runying. Enhanced a novel β-agarase production in recombinant Escherichia coli BL21 (DE3) through induction mode optimization and glycerol feeding strategy[J]. Acta Oceanologica Sinica, 2018, 37(2): 110-118. doi: 10.1007/s13131-018-1172-x
Citation: CHAN Zhuhua, CHEN Xinglin, HOU Yanping, GAO Boliang, ZHAO Chungui, YANG Suping, ZENG Runying. Enhanced a novel β-agarase production in recombinant Escherichia coli BL21 (DE3) through induction mode optimization and glycerol feeding strategy[J]. Acta Oceanologica Sinica, 2018, 37(2): 110-118. doi: 10.1007/s13131-018-1172-x

一种诱导模式和甘油补料优化策略提高重组大肠杆菌BL21(DE3)β-琼胶酶的产量

doi: 10.1007/s13131-018-1172-x
基金项目: The Public Science and Technology Research Funds Projects of Ocean under contract No. 201505026; the Fujian Province Natural Science Foundation under contract Nos 2016J01160 and 2017N0015; the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2016038.

Enhanced a novel β-agarase production in recombinant Escherichia coli BL21 (DE3) through induction mode optimization and glycerol feeding strategy

  • 摘要: 琼胶酶是作用于琼胶的水解酶,在食品、化妆品和制药工业中有广泛的应用。本文建立了一种基于诱导模式和甘油补料优化的高细胞密度和高产β-琼胶酶策略,同时可以较好的控制乙酸盐产量。首先,在诱导前期采用不同的比生长速率(μ)的甘油指数补料策略。结果表明,低的比生长速率(μ=0.2)是细胞生长和β-琼胶酶产生的最佳条件。其次,研究了诱导阶段诱导温度和诱导物浓度对细胞生长和β-琼胶酶产生的影响。当异丙基-β-d-硫代半乳糖苷(IPTG)诱导时,在20℃下0.8mmol/L的IPTG诱导策略对β-琼胶酶的产生效果最佳。采用1.0g/(L·h)的乳糖连续补料策略诱导培养,β-琼胶酶活性达到112.5U/mL,是目前报道的产量最高的β-琼胶酶。此外,β-琼胶酶能直接酶解龙须菜粉,产生新琼寡糖,水解产物为新琼胶四糖(NA4)和新琼胶六糖(NA6)。本文的研究为β-琼胶酶的工业化生产和应用提供了较好的理论依据。
  • Araki T, Hayakawa M, Lu Zhang, et al. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol, 6(4): 260-265
    Chan Zhuhua, Wang Runping, Liu Shenglong, et al. 2015. Draft genome sequence of an agar-degrading marine bacterium Flammeovirga pacifica WPAGA1. Mar Genom, 20: 23-24
    Chen Xinglin, Hou Yanping, Jin Min, et al. 2016. Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J Agric Food Chem, 64(38): 7251-7258
    Cheng Jing, Wu Dan, Chen Sheng, et al. 2011. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). J Agric Food Chem, 59(8): 3797-3802
    Chi W J, Park J S, Kang D K, et al. 2014. Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the west sea of South Korea. Appl Biochem Biotechnol, 173(7): 1703-1716
    Choi H J, Hong J B, Park J J, et al. 2011. Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. Biotechnol Bioprocess Eng, 16(1): 81-88
    Dong Qi, Ruan Linwei, Shi Hong. 2016. A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohyd Res, 432: 1-8
    Dong Jinhua, Tamaru Y, Araki T. 2007. A unique β-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol, 74(6): 1248-1255
    Dvorak P, Chrast L, Nikel P I, et al. 2015. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact, 14: 201
    Fang Shuying, Li Jianghua, Liu Long, et al. 2011. Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioresour Technol, 102(22): 10671-10678
    Goyal D, Sahni G, Sahoo D K. 2009. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresour Technol, 100(19): 4468-4474
    Han Wenjun, Gu Jingyan, Yan Qiujie, et al. 2012. A polysaccharide-degrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system. J Ocean Univ China, 11(3): 375-382
    Hassairi I, Ben Amar R, Nonus M, et al. 2001. Production and separation of α-agarase from Altermonas agarlyticus strain GJ1B. Bioresour Technol, 79(1): 47-51
    Hou Yanping, Chen Xinglin, Chan Zhuhua, et al. 2015. Expression and characterization of a thermostable and pH-stable β-agarase encoded by a new gene from Flammeovirga pacifica WPAGA1. Process Biochem, 50(7): 1068-1075
    Jang M K, Lee D G, Kim N Y, et al. 2009. Purification and characterization of neoagarotetraose from hydrolyzed agar. J Microbiol Biotechnol, 19(10): 1197-1200
    Jhamb K, Sahoo D K. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol, 123: 135-143
    Kilikian B V, Suárez I D, Liria C W, et al. 2000. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem, 35(9): 1019-1025
    Kobayashi R, Takisada M, Suzuki T, et al. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem, 61(1): 162-163
    Lakshmikanth M, Manohar S, Patnakar J, et al. 2006a. Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J Microbiol Biotechnol, 22(5): 531-537
    Lakshmikanth M, Manohar S, Souche Y, et al. 2006b. Extracellular β-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol, 22(10): 1087-1094
    Lee S B, Park J H, Yoon S C, et al. 2000. Sequence analysis of a β-agarase gene (pjaA) from Pseudomonas sp. isolated from Marine Environment. J Biosci Bioeng, 89(5): 485-488
    Li Jiang, Sha Yujie. 2015. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21. Chin J Oceanol Limnol, 33(2): 319-327
    Lin Bokun, Lu Guoyong, Zheng Yandan, et al. 2012. Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World J Microbiol Biotechnol, 28(4): 1691-1697
    Liu Yang, Yi Zhiwei, Cai Yaping, et al. 2015. Draft genome sequence of algal polysaccharides degradation bacterium, Flammeovirga sp. OC4. Mar Genom, 21: 21-22
    Long Mengxian, Yu Ziniu, Xu Xun. 2010. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol, 12(1): 62-69
    Malakar P, Venkatesh K V. 2012. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol, 93(6): 2543-2549
    Miller G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31(3): 426-428
    Oh C, Nikapitiya C, Lee Y, et al. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J Ind Microbiol Biotechnol, 37(5): 483-494
    Ramalingam S, Gautam P, Mukherjee K J, et al. 2007. Effects of post-induction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J, 33(1): 34-41
    Roseline T L, Sachindra N M. 2016. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediments. Biocatal Agric Biotechnol, 6: 219-226
    Seo Y B, Lu Yan, Chi W J, et al. 2014. Heterologous expression of a newly screened β-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application for agarose degradation. Process Biochem, 49(3): 430-436
    Shokri A, Sandén A, Larsson G. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol, 60(6): 654-664
    Sugano Y, Terada I, Arita M, et al. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol, 59(5): 1549-1554
    Suzuki H, Sawai Y, Suzuki T, et al. 2003. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng, 95(4): 328-334
    Wang Huilin, Li Xiaoman, Ma Yanhe, et al. 2015. Process optimization of high-level extracellular production of alkaline pectate lyase in recombinant Escherichia coli BL21 (DE3). Biochem Eng J, 93: 38-46
    Wang Jingxue, Mou Haijin, Jiang Xiaolu, et al. 2006. Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl Microbiol Biotechnol, 71(6): 833-839
    Xie Wei, Lin Bokun, Zhou Zhengrong, et al. 2013. Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl Microbiol Biotechnol, 97(11): 4907-4915
    Xu Hui, Fu Yuanyuan, Yang Ning, et al. 2011. Flammeovirga pacifica sp. nov. , isolated from deep-sea sediment. Int J Syst Evol Microbiol, 62(4): 937-941
    Xu Peng, Gu Qin, Wang Wenya, et al. 2013. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 4: 1409
    Xu Zhinan, Liu Gang, Cen Peilin, et al. 2000. Factors influencing excretive production of human epidermal growth factor (hEGF) with recombinant Escherichia coli K12 system. Bioprocess Eng, 23(6): 669-674
    Yang Jinglong, Chen L C, Shih Y Y, et al. 2011. Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J Biosci Bioeng, 112(3): 225-232
    Yang Meng, Mao Xiangzhao, Liu Nan, et al. 2014. Purification and characterization of two agarases from Agarivorans albus OAY02. Process Biochem, 49(5): 905-912
    Yoshizawa Y, Ametani A, Tsunehiro J, et al. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem, 59(10): 1933-1937
    Zhu Yanbing, Zhao Rui, Xiao Anfeng, et al. 2016. Characterization of an alkaline β-agarase from Stenotrophomonas sp. NTa and the enzymatic hydrolysates. Int J Biol Macromol, 86: 525-534
  • 加载中
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  53
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-28
  • 修回日期:  2011-09-21

目录

    /

    返回文章
    返回