Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis

ZHU Guoping ZHANG Haiting SONG Qi YANG Yang WANG Shaoqin YANG Qingyuan

朱国平, 张海亭, 宋旗, 杨洋, 王少琴, 杨清源. 基于稳定同位素分析推定秋冬季南极半岛南极大磷虾营养变化[J]. 海洋学报英文版, 2018, 37(6): 90-95. doi: 10.1007/s13131-018-1176-6
引用本文: 朱国平, 张海亭, 宋旗, 杨洋, 王少琴, 杨清源. 基于稳定同位素分析推定秋冬季南极半岛南极大磷虾营养变化[J]. 海洋学报英文版, 2018, 37(6): 90-95. doi: 10.1007/s13131-018-1176-6
ZHU Guoping, ZHANG Haiting, SONG Qi, YANG Yang, WANG Shaoqin, YANG Qingyuan. Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis[J]. Acta Oceanologica Sinica, 2018, 37(6): 90-95. doi: 10.1007/s13131-018-1176-6
Citation: ZHU Guoping, ZHANG Haiting, SONG Qi, YANG Yang, WANG Shaoqin, YANG Qingyuan. Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis[J]. Acta Oceanologica Sinica, 2018, 37(6): 90-95. doi: 10.1007/s13131-018-1176-6

基于稳定同位素分析推定秋冬季南极半岛南极大磷虾营养变化

doi: 10.1007/s13131-018-1176-6
基金项目: The National Natural Science Fundation of China under contract Nos 41776185 and 41606210; the National Key Technology R&D Program of China under contract No. 2013BAD13B03; the Special Fund for Agro-scientific Research in the Public Interest of China under contract No. 201203018.

Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis

  • 摘要: 南极大磷虾(Euphausia superba)为南大洋生态系统中的关键种,也是南极生态系统食物网中的重要枢纽。该种秋冬季转换期的营养信息对于理解其知之甚少的越冬机制非常重要。但关于此方面的少数研究在时空变化上仍存在着差异。为此,我们调查了南极半岛秋季(4-5月)和冬季(6月)磷虾成体δ13C和δ15N值的个体、月份及区域性差异。我们的目标旨在检验该期间磷虾的营养变化以及磷虾与其在南极海洋生态系统中的摄食环境之间的关系。结果如下:(1)磷虾δ13C值与体长之间无显著关系,但δ15N值与体长之间则存在显著相关性;(2)秋季磷虾δ13C值呈现增长趋势,但冬初季节并无显著变化,此期间δ15N值无显著不同;(3)布兰斯菲尔德与南设得兰群岛之间的δ15N平均值显著不同。我们的数据表明南极半岛秋至初冬转换期间磷虾成体营养呈现个体、季节性及区域性变化。
  • Agersted M D, Bode A, Nielsen T G. 2014. Trophic position of coexisting krill species:a stable isotope approach. Marine Ecology Progress Series, 516:139-151
    Anderson O R J, Phillips R A, McDonald R A, et al. 2009. Influence of trophic position and foraging range on mercury levels within a seabird community. Marine Ecology Progress Series, 375:277-288
    Atkinson A, Meyer B, Stübing D, et al. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter:Ⅱ. juveniles and adults. limnology and oceanography, 47(6):953-966
    Atkinson A, Siegel V, Pakhomov E A, et al. 2009. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Research Part I:Oceanographic Research Papers, 56(5):727-740
    Atkinson A, Siegel V, Pakhomov E, et al. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013):100-103
    Barkley E. 1940. Nahrung und Filterapparat des walkrebschens Euphausia superba Dana. Zeitschrift für Fischerei und deren Hilfswissen-schaften, 1:65-156
    Corbisier T N, Petti M A V, Skowronski R S P, et al. 2004. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctic):δ13C stable-isotope analysis. Polar Biology, 27(2):75-82
    Croxall J P, Reid K, Prince P A. 1999. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Marine Ecology Progress Series, 177:115-131
    Dunton K H. 2001. δ15N and δ13C Measurements of Antarctic peninsula fauna:trophic relationships and assimilation of benthic seaweeds. American Zoologist, 41(1):99-112
    Everson I. 2000. Role of krill in marine food webs:the Southern Ocean. In:Everson I, ed. Krill:Biology, Ecology and Fisheries. Oxford:Blackwell Science, 194-201
    Fischer G. 1991. Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Marine Chemistry, 35(1-4):581-596
    France R L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae:food web implications. Marine Ecology Progress Series, 124:307-312
    Frazer T K. 1996. Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. Journal of Plankton Research, 18(8):1413-1426
    Fry B, Sherr E B. 1989. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In:Rundel P W, Ehleringer J R, Nagy K A, eds. Stable Isotopes in Ecological Research. Ecological Studies (Analysis and Synthesis). New York, NY:Springer, 196-229
    Hobson K A, Welch H E. 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series, 84:9-18
    Hobson K A, Clark R G. 1992. Assessing avian diets using stable isotopes I:turnover of C in tissues. The Condor, 94(1):181-188
    Hopkins T L. 1985. Food web of an Antarctic midwater ecosystem. Marine Biology, 89(2):197-212
    Huntley M E, Zhou M. 2004. Influence of animals on turbulence in the sea. Marine Ecology Progress Series, 273:65-79
    Jia Z N, Swadling K M, Meiners K M, et al. 2016. The zooplankton food web under East Antarctic pack ice—A stable isotope study. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 131:189-202
    Kils U. 1983. Swimming and feeding of Antarctic krill, Euphausia superba—some outstanding energetic and dynamics, some unique morphological details. Berichte zur Polarforschung, 4:130-155
    Ko A R, Yang E J, Kim M S, et al. 2016. Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable isotopic signatures. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 123:78-85
    Kokubun N, Choy E J, Kim J H, et al. 2015. Isotopic values of Antarctic krill in relation to foraging habitat of penguins. Ornithological Science, 14(1):13-20
    Makarov R R, Denys C J. 1981. Stages of sexual maturity of Euphausia superba Dana. BIOMASS Handbook. v 11. Cambridge:Scientific Committee on Antarctic Research, 1-13
    Martin D L, Ross R M, Quetin L B, et al. 2006. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Marine Ecology Progress Series, 319:155-165
    Meyer B, Auerswald L, Siegel V, et al. 2010. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Marine Ecology Progress Series, 398:1-18
    Michener R H, Schell D M. 1994. Stable isotope ratios as tracers in marine aquatic food webs. In:Lajtha K, Michener R H, eds. Stable Isotopes in Ecology and Environmental Science. Oxford, UK:Blackwell Publishing Ltd, 138-158
    Mordy C W, Penny D M, Sullivan C W. 1995. Spatial distribution of bacterioplankton biomass and production in the marginal ice-edge zone of the Weddell-Scotia Sea during austral winter. Marine Ecology Progress Series, 122:9-19
    Nicol S, Foster J. 2016. The fishery for Antarctic krill:its current status and management regime. In:Siegel V, ed. Biology and Ecology of Antarctic Krill. Cham:Springer, 387-421
    Nishino Y, Kawamura A. 1996. Food habits of the Antarctic krill Euphausia superba Dana in South Shetland waters. Bulletin of Plankton Society of Japan, 43(1):9-19
    Polito M J, Goebel M E. 2010. Investigating the use of stable isotope analysis of milk to infer seasonal trends in the diets and foraging habitats of female Antarctic fur seals. Journal of Experimental Marine Biology and Ecology, 395(1–2):1-9
    Polito M J, Reiss C S, Trivelpiece W Z, et al. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Mar Biol, 160(6):1311-1323
    Schmidt K, Atkinson A, Stübing D, et al. 2003. Trophic relationships among Southern Ocean copepods and krill:Some uses and limitations of a stable isotope approach. Limnology and Oceanography, 48(1):277-289
    Schmidt K, McClelland J W, Mente E, et al. 2004. Trophic-level interpretation based on δ15N values:implications of tissue-specific fractionation and amino acid composition. Marine Ecology Progress Series, 266:43-58
    Schmidt K, Atkinson A, Petzke K J, et al. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba:complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5):2409-2427
    Schmidt K, Atkinson A. 2016. Feeding and food processing in Antarctic krill (Euphausia superba Dana). In:Siegel V, ed. Biology and Ecology of Antarctic krill. Switzerland:Springer, 175-224
    Stowasser G, Atkinson A, McGill R A R, et al. 2012. Food web dynamics in the Scotia Sea in summer:a stable isotope study. Deep-Sea Research Part Ⅱ, 59:208-221
    Trivelpiece W Z, Hinke J T, Miller A K, et al. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy Science of the United States of America, 108(18):7625-7628
    Vander Zanden M J, Rasmussen J B. 2001. Variation in δ15N and δ13C trophic fractionation:implications for aquatic food web studies. Limnology and Oceanography, 46(8):2061-2066
    Wada E, Terazaki M, Kabaya Y, et al. 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Research Part A. Oceanographic Research Papers, 34(5-6):829-841
  • 加载中
计量
  • 文章访问数:  813
  • HTML全文浏览量:  49
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28
  • 修回日期:  2017-07-29

目录

    /

    返回文章
    返回