Degradation of malachite green dye by Tenacibaculum sp. HMG1 isolated from Pacific deep-sea sediments

QU Wu HONG Guolin ZHAO Jing

曲武, 洪国粦, 赵晶. 太平洋深海沉积物来源的菌株Tenacibaculum sp.HMG1对孔雀石绿降解特性的研究[J]. 海洋学报英文版, 2018, 37(6): 104-111. doi: 10.1007/s13131-018-1187-3
引用本文: 曲武, 洪国粦, 赵晶. 太平洋深海沉积物来源的菌株Tenacibaculum sp.HMG1对孔雀石绿降解特性的研究[J]. 海洋学报英文版, 2018, 37(6): 104-111. doi: 10.1007/s13131-018-1187-3
QU Wu, HONG Guolin, ZHAO Jing. Degradation of malachite green dye by Tenacibaculum sp. HMG1 isolated from Pacific deep-sea sediments[J]. Acta Oceanologica Sinica, 2018, 37(6): 104-111. doi: 10.1007/s13131-018-1187-3
Citation: QU Wu, HONG Guolin, ZHAO Jing. Degradation of malachite green dye by Tenacibaculum sp. HMG1 isolated from Pacific deep-sea sediments[J]. Acta Oceanologica Sinica, 2018, 37(6): 104-111. doi: 10.1007/s13131-018-1187-3

太平洋深海沉积物来源的菌株Tenacibaculum sp.HMG1对孔雀石绿降解特性的研究

doi: 10.1007/s13131-018-1187-3
基金项目: The Scientific Research Project of Xiamen Southern Oceanographic Center under contract No. 17GZP007NF03; the China Ocean Mineral Resources R&D Association under contract No. DY-125-22-QY-18.

Degradation of malachite green dye by Tenacibaculum sp. HMG1 isolated from Pacific deep-sea sediments

  • 摘要: 本文在太平洋深海沉积物中分离得到一株孔雀石绿降解菌株,鉴定命名为Tenacibaculum sp.HMG1。通过菌株生长实验和高效液相色谱的研究表明, HMG1菌株可以在20 mg/L的孔雀石绿中维持较快的生长速率,并且在12 h内可降解98.8%的孔雀石绿,这证明该菌株具有很高的孔雀石绿耐受能力和降解活性。通过基因组测序在HMG1菌株发现一条过氧化物酶基因可能参与了孔雀石绿的降解,随后利用原核表达获得了相应的重组蛋白。实验表明,该重组过氧化物酶具有极强的活性,可在1000 mg/L的孔雀石绿中发挥降解功能。本文利用液相色谱-质谱联用(LC-MS)技术对孔雀石绿的菌株降解产物和重组酶降解产物进行鉴定,并基于鉴定结果推测了两种降解途径。结果发现两种降解方式存在共同的降解途径。此外,孔雀石绿降解条件的实验结果证明重组过氧化物酶可以在低温(20℃)、复杂的pH值(6.0–9.0)、高盐度(100 mmol/L)、金属离子和EDTA等反应条件下依旧维持很高的孔雀石绿降解活性。以上实验结果表明,HMG1菌株和重组过氧化物酶均在孔雀石绿污染生物修复方面具有很大潜力。
  • Ali L, Algaithi R, Habib H M, et al. 2013. Soybean peroxidase-mediated degradation of an azo dye—a detailed mechanistic study. BMC Biochemistry, 14:35-47
    Bhunia A, Durani S, Wangikar P P.. 2001. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnology and Bioengineering, 72(5):562-567
    Cha C J, Daniel D R, Cerniglia C E. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 67(9):4358-4360
    Chen C H, Chang C F, Liu S M. 2010. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. Journal of Hazardous Materials, 177(1-3):281-289
    Chen G Y, Miao S. 2010. HPLC determination and MS confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle. Journal of Agriculture Food Chemistry, 58(12):7109-7114
    Chi W J, Park D Y, Seo Y B, et al. 2014. Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Applied Microbiology and Biotechnology, 98(10):4545-4555
    Darajeh N, Idris A, Truong P, et al. 2014. Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 2014:683579
    Dash H R, Mangwani N, Chakraborty J, et al. 2013. Marine bacteria:potential candidates for enhanced bioremediation. Applied Microbiology and Biotechnology, 97(2):561-571
    De Souza S M A G U, Forgiarini E, de Souza A A U. 2007. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). Journal of Hazardous Materials, 147(3):1073-1078
    Du L N, Wang S, Li G, et al. 2011. Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition:characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 20(2):438-446
    Du L N, Zhao M, Li G, et al. 2013. Biodegradation of malachite green by Micrococcus sp. strain BD15:Biodegradation pathway and enzyme analysis. International Biodeterioration & Biodegradation, 78:108-116
    Forgacsa E, Cserhátia T, Oros G. 2004. Removal of synthetic dyes from wastewaters:a review. Environment International, 30(7):953-971
    Garg V K, Kumar R, Gupta R. 2004. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste:a case study of Prosopis cineraria. Dyes Pigments, 62(1):1-10
    Goszczynski S, Paszczynski A, Pastigrigsby M B, et al. 1994. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. Journal of Bacteriology, 176(5):1339-1347
    Han W J, Cheng Y Y, Wang D D, et al. 2016. Biochemical characteristics and substrate degradation pattern of a novel exo-type β-agarase from the polysaccharide-degrading marine bacterium Flammeovirga sp. strain MY04. Applied and Environmental Microbiology, 82(16):4944-4954
    Jadhav J P, Govindwar S P. 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast, 23(4):315-323
    Kedderis G L, Hollenberg P F. 1983. Characterization of the N-demethylation reactions catalyzed by horseradish peroxidase. Journal of Biological Chemistry, 258(13):8129-8138
    Kedderis G L, Koop D R, Hollenberg P F. 1983. N-demethylation reactions catalyzed by chloroperoxidase. Journal of Biological Chemistry, 255(21):10174-10182
    Kuhad R C, Kuhar S, Sharma K K, et al. 2013. Microorganisms and enzymes involved in lignin degradation vis-à-vis production of nutritionally rich animal feed:an overview. In:Kuhad R, Singh A, eds. Biotechnology for Environmental Management and Resource Recovery. India:Springer, 3-44
    Littlefield N A, Blackwell B N, Hewitt C C, et al. 1985. Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundamental and Applied Toxicology, 5(5):902-912
    Miwa G T, Walsh J S, Kedderis G L, et al. 1983. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450 and ceroxidase-catalyzed N-demethylation reactions. Journal of Biological Chemistry, 258(23):14445-14449
    Novič M, Pihlar B, Dular M. 1988. Use of flow injection analysis based on iodometry for automation of dissolved oxygen (Winkler method) and chemical oxygen demand (dichromate method) determinations. Fresenius' Zeitschrift für analytische Chemie, 332(7):750-755
    Parshetti G K, Kalme S D, Saratale G D, et al. 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53(4):492-498
    Pinhassi J, Zweifel U L, Hagström A. 1997. Dominant marine bacterioplankton species found among colony-forming bacteria. Applied and Environmental Microbiology, 63(9):3359-3366
    Poulos T L, Kraut J.. 1980. The stereochemistry of peroxidase catalysis. The Journal of Biological Chemistry, 255(17):8199-8205
    Raghukumar C, D'Souza-Ticlo D, Verma A. 2008. Treatment of colored effluents with lignin-degrading enzymes:an emerging role of marine-derived fungi. Critical Reviews in Microbiology, 34(3-4):189-206
    Ren Q, Jiang L J, Song W, et al. 2007. Isolation and identification of malachite green-degrading bacteria M3 and its degradation characteristics. Journal of Ecology and Rural Environment (in Chinese), 23(3):65-69
    Robinson T, Mcmullan G, Marchant R, et al. 2001. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3):247-255
    Sakalle K, Rajkumar S. 2009. Isolation of crude oil degrading marine bacteria and assessment for biosurfactant production. The Internet Journal Microbiology, 7(2):1-7
    Srivastava S, Sinha R, Roy D. 2004. Toxicological effects of malachite green. Aquatic Toxicology, 66(3):319-329
    Tao Y B, Wang F, Meng L J, et al. 2017. Biological decolorization and degradation of malachite green by Pseudomonas sp. YB2:process optimization and biodegradation pathway. Current Microbiology, 74(10):1210-1215
    Torres J M O, Cardenas C V, Moron L S, et al. 2011. Dye decolorization activities of marine-derived fungi isolated from Manila Bay and Calatagan Bay, Philippines. Philippine Journal of Science, 140(2):133-143
    Von C H, Kelly S, Li Y, et al.. 2002. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Applied and Environmental Microbiology, 68(6):2829-2837
    Vu B, Chen M, Crawford R J, et al. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7):2535-2554
    Wang J A, Gao F, Liu Z Z, et al. 2012. Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2. PLoS One, 7(12):e51808
    Weisburg W G, Barns S M, Pelletier D A, et al. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2):697-703
    Xia Y H, Gu W C. 2000. Statistical analysis of mean sea temperatures at tidal gauge stations along Guangxi Coast. Marine Science Bulletin, 19(4):15-21
    Zhang J W, Zeng R Y. 2008. Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Marine Biotechnology, 10(1):75-82
    Zhai Y X, Zhang C, Ning J S, et al. 2007. Survey of malachite green residue in aquatic product. Marine Fisheries Research (in Chinese), 28(1):101-108
    Zhang P P, Ren S Z, Xu M Y, et al. 2009. Recent advances in microbial decolorization of triphenylmethane dyes. Microbiology (in Chinese), 36(9):1410-1417
  • 加载中
计量
  • 文章访问数:  691
  • HTML全文浏览量:  51
  • PDF下载量:  1059
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-18
  • 修回日期:  2017-12-12

目录

    /

    返回文章
    返回