Spatial pattern of macrobenthic communities along a shelf-slope-basin transect across the Bering Sea

LIN Heshan LIU Kun WANG Jianjun HUANG Yaqin LI Zhong LIN Junhui HE Xuebao ZHANG Shuyi MOU Jianfeng WANG Yu XING Bingpeng

林和山, 刘坤, 王建军, 黄雅琴, 李众, 林俊辉, 何雪宝, 张舒怡, 牟剑锋, 王雨, 邢炳鹏. 白令海大型底栖动物群落结构及其空间分布格局[J]. 海洋学报英文版, 2018, 37(6): 72-81. doi: 10.1007/s13131-018-1192-6
引用本文: 林和山, 刘坤, 王建军, 黄雅琴, 李众, 林俊辉, 何雪宝, 张舒怡, 牟剑锋, 王雨, 邢炳鹏. 白令海大型底栖动物群落结构及其空间分布格局[J]. 海洋学报英文版, 2018, 37(6): 72-81. doi: 10.1007/s13131-018-1192-6
LIN Heshan, LIU Kun, WANG Jianjun, HUANG Yaqin, LI Zhong, LIN Junhui, HE Xuebao, ZHANG Shuyi, MOU Jianfeng, WANG Yu, XING Bingpeng. Spatial pattern of macrobenthic communities along a shelf-slope-basin transect across the Bering Sea[J]. Acta Oceanologica Sinica, 2018, 37(6): 72-81. doi: 10.1007/s13131-018-1192-6
Citation: LIN Heshan, LIU Kun, WANG Jianjun, HUANG Yaqin, LI Zhong, LIN Junhui, HE Xuebao, ZHANG Shuyi, MOU Jianfeng, WANG Yu, XING Bingpeng. Spatial pattern of macrobenthic communities along a shelf-slope-basin transect across the Bering Sea[J]. Acta Oceanologica Sinica, 2018, 37(6): 72-81. doi: 10.1007/s13131-018-1192-6

白令海大型底栖动物群落结构及其空间分布格局

doi: 10.1007/s13131-018-1192-6
基金项目: The National Natural Science Foundation of China under contract Nos 41306116 and 41506217; the Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE 04-03, 03-05 and 03-02; the Polar Science Strategic Research Foundation of China under contract No. 20140309; the Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2016011.

Spatial pattern of macrobenthic communities along a shelf-slope-basin transect across the Bering Sea

  • 摘要: 白令海因其特殊的地理位置成为研究太平洋—北冰洋和亚北极—北极水体交换和生态系统联通性的理想场所。本研究基于多年的大面点调查(53°59'~64°36'N),分析白令海陆架—陆坡—海盆区大型底栖生物的群落结构、时空格局及其与环境因子的关系。该海域大型底栖生物的物种组成以北方冷水种和广温性迁入种为主,各区域间的物种组成和数量分布呈极显著差异,群落呈离散的斑块化分布格局。多毛类(Scoloplos armiger)、甲壳类(Ceradocus capensis)和海胆(Echinarachnius parma)为浅海陆架区的主要优势类群,海星(Ctenodiscus crispatus)和海蛇尾(Ophiura sarsii)为陆坡区的主导者,而海盆区以小型多毛类(Prionospio malmgreni)为主。分析表明,底质类型、水深和海流是影响群落结构及其空间分布的主要因素,与全球其他海区相比,白令海陆架和陆坡区均有极高的生物现存量,尤其是受阿纳德流(AW)主控的北部陆架区(圣劳伦斯岛以北,170°W以西),犹如一片海底绿洲,相反,颗粒有机碳向下输入的匮乏致使海盆区成为一片海底荒漠。与以往相关研究对比,近几十年间白令海大型底栖生物群落发生了明显的结构性变化,栖息密度下降,而生物量呈增长趋势,北部陆架区端足类和双壳类的种群数量明显减少,优势地位逐渐被其他种群所取代。所有的这些改变可能与提早的季节性融冰、有机碳输入的改变以及气候变暖有关,预示着白令海海底正悄然经历着一场大规模的生态系统变化。
  • ACIA. 2004. Impacts of a Warming Arctic:Arctic Climate Impact Assessment. Cambridge, UK:Cambridge University Press
    Banse K, English D C. 1999. Comparing phytoplankton seasonality in the eastern and western subarctic Pacific and the western Bering Sea. Progress in Oceanography, 43(2-4):235-288
    Berger W H, Fischer K, Lai C, et al. 1987. Ocean productivity and organic carbon flux, Part I:Overview and maps of primary production and export production. In:SIO Reference Series. San Diego:University of California, Scripps Institution of Oceanography, 67
    Siddon E, Zador S. 2017. Ecosystem Considerations 2017, Status of the Eastern Bering Sea Marine Ecosystem. Anchorage AK, USA:North Pacific Fishery Management Council
    Blanchard A L, Parris C L, Knowlton A L, et al. 2013a. Benthic ecology of the northeastern Chukchi Sea:Part I. Environmental characteristics and macrofaunal community structure, 2008-2010. Continental Shelf Research, 67:52-66
    Blanchard A L, Parris C L, Knowlton A L, et al. 2013b. Benthic ecology of the northeastern Chukchi Sea:Part Ⅱ. Spatial variation of megafaunal community structure, 2009-2010. Continental Shelf Research, 67:67-76
    Blanchet F G, Legendre P, Borcard D. 2008. Forward selection of explanatory variables. Ecology, 89(9):2623-2632
    Bolam S G, Barrio-Frojan C R S, Eggleton J D. 2010. Macrofaunal production along the UK continental shelf. Journal of Sea Research, 64(3):166-179
    Bolam S G, Eggleton J D. 2014. Macrofaunal production and biological traits:spatial relationships along the UK continental shelf. Journal of Sea Research, 88:47-58
    Borcard D, Gillet F, Legendre P. 2011. Numerical Ecology with R. New York:Springer Science + Business Media
    Brey T, Gerdes D. 1998. High Antarctic macrobenthic community production. Journal of Experimental Marine Biology and Ecology, 231(2):191-200
    Carey A G Jr. 1991. Ecology of North American Arctic continental shelf benthos:a review. Continental Shelf Research, 11(8-10):865-883
    Clement J L, Maslowski W, Cooper L W, et al. 2005. Ocean circulation and exchanges through the northern Bering Sea-1979-2001 model results. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3509-3540
    Cooper K M, Barrio Froján C R S, Defew E, et al. 2008. Assessment of ecosystem function following marine aggregate dredging. Journal of Experimental Marine Biology and Ecology, 366(1-2):82-91
    Cusson M, Bourget E. 2005. Global patterns of macroinvertebrate production in marine benthic habitats. Marine Ecology Progress Series, 297:1-14
    Dehn L A, Sheffield G G, Follmann E H, et al. 2007. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biology, 30(2):167-181
    Dunton K H, Goodall J L, Schonberg S V, et al. 2005. Multi-decadal synthesis of benthic-pelagic coupling in the western arctic:role of cross-shelf advective processes. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(24-26):3462-3477
    Fuhrmann M M, Pedersen T, Ramasco V, et al. 2015. Macrobenthic biomass and production in a heterogenic subarctic fjord after invasion by the red king crab. Journal of Sea Research, 106:1-13
    GBIF Secretariat. 2017. GBIF Backbone Taxonomy. https://doi. org/10.15468/39omei[2017-09-06/2017-11-11]
    Grebmeier J M, Cooper L W. 1995. Influence of the St. Lawrence Island polynya upon the Bering Sea benthos. Journal of Geophysical Research, 100(C3):4439-4460
    Grebmeier J M, Cooper L W, Feder H M, et al. 2006a. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Progress in Oceanography, 71(2-4):331-361
    Grebmeier J M, Dunton K H. 2000. Benthic processes in the northern Bering/Chukchi seas:status and global change. In:Huntington H P, ed. Impacts of Changes in Sea Ice and Other Environmental Parameters in the Arctic. Bethesda, MD:Marine Mammal Commission Workshop, 80-93
    Grebmeier J M, McRoy C P. 1989. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas:Ⅲ. Benthic food supply and carbon cycling. Marine Ecology Progress Series, 53:79-91
    Grebmeier J M, McRoy C P, Feder H M. 1988. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas:I. Food supply source and benthic biomass. Marine Ecology Progress Series, 48:57-67
    Grebmeier J M, Overland J E, Moore S E, et al. 2006b. A major ecosystem shift in the northern Bering Sea. Science, 311(5766):1461-1464
    Highsmith R C, Coyle K O. 1990. High productivity of northern Bering Sea benthic amphipods. Nature, 344(6269):862-864
    Hopcroft R, Bluhm B, Gradinger R. 2008. Arctic Ocean synthesis:analysis of climate change impacts in the Chukchi and Beaufort seas with strategies for future research. Anchorage, Alaska:North Pacific Research Board
    Huang Zongguo, Lin Mao. 2012a. The Living Species and Their Illustrations in China's Seas (Part I) (in Chinese). Beijing:China Ocean Press
    Huang Zongguo, Lin Mao. 2012b. The Living Species and Their Illustrations in China's Seas (Part Ⅱ) (in Chinese). Beijing:China Ocean Press
    Huang Jianbin, Zhang Xiangdong, Zhang Qiyi, et al. 2017. Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7:875-879,, doi: 10.1038/s41558-017-0009-5
    Kędra M, Renaud P E, Andrade H, et al. 2013. Benthic community structure, diversity, and productivity in the shallow Barents Sea bank (Svalbard Bank). Marine Biology, 160(4):805-819
    Lepš J, Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. New York:Cambridge University Press
    Lin Heshan, Wang Jianjun, Liu Kun, et al. 2016. Benthic macrofaunal production for a typical shelf-slope-basin region in the western Arctic Ocean. Continental Shelf Research, 113:30-37
    Lovvorn J R, Richman S E, Grebmeier J M, et al. 2003. Diet and body condition of spectacled eiders wintering in pack ice of the Bering Sea. Polar Biology, 26(4):259-267
    McCormick-Ray J, Warwick R M, Ray G C. 2011. Benthic macrofaunal compositional variations in the northern Bering Sea. Marine Biology, 158(6):1365-1376
    Moore S E, Grebmeier J M, Davis J R. 2003. Gray whale distribution relative to forage habitat in the northern Bering Sea:current conditions and retrospective summary. Canadian Journal of Zoology, 81(4):734-742
    Moore S E, Stafford K M, Mellinger D K, et al. 2006. Listening for large whales in the offshore waters of Alaska. Bioscience, 56(1):49-55
    Okkonen S R, Schmidt G M, Cokelet E D, et al. 2004. Satellite and hydrographic observations of the Bering Sea ‘Green Belt’. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 51(10-11):1033-1051
    Oksanen J. 2017. Vegan:an introduction to ordination. http://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf[2017-08-04/2017-11-12]
    Perovich D K, Gerland S, Hendricks S, et al. 2015. The Arctic:Sea Ice Cover. Boston:American Meteorological Society
    Petersen G H, Curtis M A. 1980. Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana, 1:53-64
    Piepenburg D. 2005. Recent research on Arctic benthos:common notions need to be revised. Polar Biology, 28(10):733-755
    Pitcher K W. 1990. Major decline in number of harbor seals, Phoca vitulina richardsi, on Tugidak Island, Gulf of Alaska. Marine Mammal Science, 6(2):121-134
    Qiao Shuqing, Shi Xuefa, Saito Y, et al. 2011. Sedimentary records of natural and artificial Huanghe (Yellow River) channel shifts during the Holocene in the southern Bohai Sea. Continental Shelf Research, 31(13):1336-1342
    Ray G C, McCormick-Ray J, Berg P, et al. 2006. Pacific Walrus:benthic bioturbator of Beringia. Journal of Experimental Marine Biology and Ecology, 330(1):403-419
    Robertson A I. 1979. The relationship between annual production:biomass ratios and lifespans for marine macrobenthos. Oecologia, 38(2):193-202
    Springer A M, Mcroy C P, Flint M V. 1996. The Bering Sea Green Belt:shelf-edge processes and ecosystem production. Fisheries Oceanography, 5(3-4):205-223
    Wang Jianjun, He Xuebao, Lin Heshan, et al. 2014a. Community structure and spatial distribution of macrobenthos in the shelf area of the Bering Sea. Acta Oceanologica Sinica, 33(6):74-81
    Wang Jianjun, Lin Heshan, He Xuebao, et al. 2014b. Biodiversity and community structural characteristics of macrobenthos in the Chukchi Sea. Acta Oceanologica Sinica, 33(6):82-89
    Wlodarska-Kowalczuk M, Weslawski J M. 2001. Impact of climate warming on Arctic benthic biodiversity:a case study of two Arctic glacial bays. Climate Research, 18(1-2):127-132
    Woodgate R A, Aagaard K. 2005. Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophysical Research Letters, 32(2):L02602
    WoRMS. 2017. World register of marine species. http://www.marinespecies.org/[2017-09-05/2017-11-01]
    Yao Zhengquan, Shi Xuefa, Liu Qingsong, et al. 2014. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China:implications for glacial-interglacial sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology, 393:90-101
  • 加载中
计量
  • 文章访问数:  847
  • HTML全文浏览量:  59
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-25
  • 修回日期:  2017-12-11

目录

    /

    返回文章
    返回