Numerical simulations of rip currents off arc-shaped coastlines

WANG Hong ZHU Shouxian LI Xunqiang ZHANG Wenjing NIE Yu

汪鸿, 朱首贤, 李训强, 张文静, 聂屿. 弧形海岸裂流的数值模拟研究[J]. 海洋学报英文版, 2018, 37(3): 21-30. doi: 10.1007/s13131-018-1197-1
引用本文: 汪鸿, 朱首贤, 李训强, 张文静, 聂屿. 弧形海岸裂流的数值模拟研究[J]. 海洋学报英文版, 2018, 37(3): 21-30. doi: 10.1007/s13131-018-1197-1
WANG Hong, ZHU Shouxian, LI Xunqiang, ZHANG Wenjing, NIE Yu. Numerical simulations of rip currents off arc-shaped coastlines[J]. Acta Oceanologica Sinica, 2018, 37(3): 21-30. doi: 10.1007/s13131-018-1197-1
Citation: WANG Hong, ZHU Shouxian, LI Xunqiang, ZHANG Wenjing, NIE Yu. Numerical simulations of rip currents off arc-shaped coastlines[J]. Acta Oceanologica Sinica, 2018, 37(3): 21-30. doi: 10.1007/s13131-018-1197-1

弧形海岸裂流的数值模拟研究

doi: 10.1007/s13131-018-1197-1
基金项目: The National Natural Science Foundation under contract Nos 41206163, 41076048 and 41376012; the Operation Expenses for Universities' Basic Scientific Research of Central Authorities under contract Nos 2011B05714 and 2014B06514.

Numerical simulations of rip currents off arc-shaped coastlines

  • 摘要: 弧形海岸波浪产生的裂流严重危害人类活动,但是目前对其特征缺乏充分认识。本文对Haller物理模型实验和三亚大东海的数值模拟表明FUNWAVE模式具有较好的裂流模拟能力。基于该模式进行了多种弧形海岸条件的裂流数值模拟,给出裂流的一些特征:(1)海岸弯曲度增大,裂流增强;(2)海岸坡度对裂流有比较大的影响,太陡或太平缓的海岸不利于形成裂流;(3)海岸尺寸减小,裂流减弱;(4)波高和波周期增大,裂流增强,但是对于某些海岸而言,0.4m波高可能就存在危害比较大的裂流。
  • Bae J S, Yoon S B, Choi J. 2013. Boussinesq modelling of a rip current at Heaundae Beach in South Korea. Journal of Coastal Research, 65: 654-659
    Bowen A J. 1969. Rip currents: 1. Theoretical investigations. Journal of Geophysical Research, 74(23): 5467-5478
    Brown J, MacMahan J H, Reniers A, et al. 2009. Surf zone diffusivity on a Rip-Channeled Beach. Journal of Geophysical Research, 114(C11), doi: 10.1029/2008JC005158
    Castelle B, Coco G. 2012. The morphodynamics of rip channels on embayed beaches. Continental Shelf Research, 43: 10-23
    Castelle B, Michallet H, Marieu V, et al. 2010. Laboratory experiment on rip current circulations over a moveable bed: drifter measurements. Journal of Geophysical Research, 115(C12), doi: 10.1029/2010JC006343
    Chen Qin, Dalrymple R A, Kirby J T, et al. 1999. Boussinesq modeling of a rip current system. Journal of Geophysical Research, 104(C9): 20617-20637
    Choi J, Shin C H, Yoon S B. 2013. Numerical study on sea state parameters affecting rip current at Haeundae Beach: wave period, height, direction and tidal elevation. Journal of Korea Water Resources Association, 46(2): 205-218
    Dalrymple R A, Macmahan J H, Reniers A J H M, et al. 2011. Rip currents. Annual Review of Fluid Mechanics, 43(1): 551-581
    Dean R G, Oh T M. 1994. Three dimensional morphology in a narrow wave tank: measurements and theory. In: 24th International Conference on Coastal Engineering. Kobe, Japan: ASCE, 1918
    Drønen N, Karunarathna H, Fredsøe J, et al. 2002. An experimental study of rip channel flow. Coastal Engineering, 45(3-4): 223-238
    Fang Kezhao, Zou Zhili, Liu Zhongbo. 2011. Numerical simulation of rip current generated on a barred beach. Chinese Journal of Hydrodynamics (in Chinese), 26(4): 479-486
    Giger M, Dracos T, Jirka G H. 1991. Entrainment and mixing in plane turbulent jets in shallow water. Journal of Hydraulic Research, 29(5): 615-642
    Ha T, Jun K, Yoo J, et al. 2014. Numerical study of rip current generation mechanism at Haeundae Beach, Korea. Journal of Coastal Research, S72: 179-183
    Haas K A, Svendsen I A. 2002. Laboratory measurements of the vertical structure of rip currents. Journal of Geophysical Research, 107(C5): 15-1-15-19
    Haller M C, Dalrymple R A, Svendsen I A. 2002. Experimental study of nearshore dynamics on a barred beach with rip channels. Journal of Geophysical Research, 107(C6): 14-1-14-21
    Hass K A, Svendsen I A, Haller M C, et al. 2003. Quasi-three-dimensional modeling of rip current systems. Journal of Geophysical Research, 108(C7): 3217
    Hsu J R C, Silvester R, Xia Yimin. 1989. Applications of headland control. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(3): 299-310
    Huntley D A, Hendry M D, Haines J, et al. 1988. Waves and rip currents on a Caribbean Pocket beach, Jamaica. Journal of Coastal Research, 4(1): 69-79
    Jin Hong, Zou Zhili, Qiu Dahong, et al. 2006. The effects of wave-induced currents on the transport of pollutant outside and inside surf zone. Haiyang Xuebao (in Chinese), 28(6): 144-150
    Kennedy A B, Thomas D. 2004. Drifter measurements in a laboratory rip current. Journal of Geophysical Research, 109(C8): C08005
    Lascody R L. 1998. East central florida rip current program. National Weather Digest, 22(2): 25-30
    Li Zhiqiang, Li Weiquan, Chen Zishen, et al. 2014. Influencing factors and classifications of arc-shaped coasts in South China. Acta Geographica Sinica (in Chinese), 69(5): 595-606
    Li Zhiqiang. 2016. Rip current hazards in South China headland beaches. Ocean & Coastal Management, 121: 23-32
    Li Zhiqiang, Zhu Yamin. 2015. Beach safety evaluation based on rip current morphodynamic: a case study of Dadonghai of Sanya, China. Tropical Geography (in Chinese), 35(1): 96-102
    MacMahan J H, Thornton E B, Reniers A J H M. 2006. Rip current review. Coastal Engineering, 53(2-3): 191-208
    Shi Fengyan, Kirby J T, Harris J C, et al. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43-44: 36-51
    Shin C H, Noh K, Yoon S B, et al. 2014. Understanding of rip current generation mechanism at Haeundae Beach of Korea: honeycomb waves. Journal of Coastal Research, 72: 11-15
    Short A D. 2007. Australian rip systems-friend or foe?. Journal of Coastal Research, S50: 7-11
    Wang Yan, Zou Zhili. 2014. Progress and prospect of rip currents. Haiyang Xuebao (in Chinese), 36(5): 170-176
    Wei G, Kirby J T, Sinha A. 1999. Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36: 271-299
  • 加载中
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  60
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20

目录

    /

    返回文章
    返回