Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014

ZHONG Wenli GUO Guijun ZHAO Jinping LI Tao WANG Xiaoyu MU Longjiang

钟文理, 郭桂军, 赵进平, 李涛, 王晓宇, 牟龙江. 2014年大西洋水在楚科奇边陲区域的上边界混合[J]. 海洋学报英文版, 2018, 37(3): 31-41. doi: 10.1007/s13131-018-1198-0
引用本文: 钟文理, 郭桂军, 赵进平, 李涛, 王晓宇, 牟龙江. 2014年大西洋水在楚科奇边陲区域的上边界混合[J]. 海洋学报英文版, 2018, 37(3): 31-41. doi: 10.1007/s13131-018-1198-0
ZHONG Wenli, GUO Guijun, ZHAO Jinping, LI Tao, WANG Xiaoyu, MU Longjiang. Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014[J]. Acta Oceanologica Sinica, 2018, 37(3): 31-41. doi: 10.1007/s13131-018-1198-0
Citation: ZHONG Wenli, GUO Guijun, ZHAO Jinping, LI Tao, WANG Xiaoyu, MU Longjiang. Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014[J]. Acta Oceanologica Sinica, 2018, 37(3): 31-41. doi: 10.1007/s13131-018-1198-0

2014年大西洋水在楚科奇边陲区域的上边界混合

doi: 10.1007/s13131-018-1198-0
基金项目: The Key Project of Chinese Natural Science Foundation under contract No. 41330960; the National Basic Research Program (973 Program) of China under contract No. 2015CB953902; the Ph D Programs Foundation of Ministry of Education of China under contract No. 20130132110021; the National Natural Science Foundation of China under contract No. 41706211.

Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014

  • 摘要: 依据2014年考察收集的CTD数据和湍流微结构数据,我们研究了大西洋水在楚科奇边陲区域的上边界混合环境。在海冰快速退缩的背景下,表面风场驱动上层海洋运动的效率提升,由此造就了一个“躁动”的北冰洋内部环境。结果显示在200-300m(大西洋水的上界面)深度上湍耗散率在4.60×10-10W/kg—3.31×10-9W/kg,平均值为1.33×10-9W/kg,而湍扩散率在1.45×10-6m2s-1—1.46×10-5m2s-1,平均值为4.84×10-6m2s-1。在分析研究传统的调控湍耗散率的因素(如:风、地形、潮汐)之后,研究结果显示潮动能在大西洋水上界面的混合中扮演着主导作用。除此之外,波弗特流涡位置的摆动影响着地转流的垂直剪切并在一定程度上贡献于湍混合的区域差别。研究还利用湍流微结构数据计算的双扩散对流热通量对比验证了实验室参数化方案的可行性。
  • Carmack E C, Macdonald R W, Perkin R G, et al. 1995. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition. Geophys Res Lett, 22(9): 1061-1064
    D'Asaro E A, Morison J H. 1992. Internal waves and mixing in the Arctic Ocean. Deep-Sea Res: A, 39: S459-S484
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc, 137(656): 553-597,, doi: 10.1002/qj.828
    Dosser H V, Rainville L, Toole J M. 2014. Near-inertial internal wave field in the Canada Basin from ice-tethered profilers. J Phys Oceanogr, 44(2): 413-426,, doi: 10.1175/JPO-D-13-0117.1
    Dosser H V, Rainville L. 2016. Dynamics of the changing near-inertial internal wave field in the Arctic Ocean. J Phys Oceanogr, 46(2): 395-415
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Technol, 19(2): 183-204
    Fer I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos Oceanic Sci Lett, 2(3): 148-152
    Ghaemsaidi S J, Dosser H V, Rainville L, et al. 2016. The impact of multiple layering on internal wave transmission. J Fluid Mech, 789: 617-629
    Guthrie J D, Morison J H, Fer I. 2013. Revisiting internal waves and mixing in the Arctic Ocean. J Geophys Res, 118(8): 3966-3977
    Ivey G N, Winters K B, Koseff J R. 2008. Density stratification, turbulence, but how much mixing?.. Annu Rev Fluid Mech, 40(1): 169-184
    Kaneko H, Yasuda I, Komatsu K, et al. 2012. Observations of the structure of turbulent mixing across the Kuroshio. Geophys Res Lett, 39(15): L15602, doi: 10.1029/2012GL052419
    Kelley D. 1984. Effective diffusivities within oceanic thermohaline staircases. J Geophys Res, 89(C6): 10484-10488,, doi: 10.1029/JC089iC06p10484
    Kelley D E. 1990. Fluxes through diffusive staircases: a new formulation. J Geophys Res, 95(C3): 3365-3371
    Kikuchi T, Inoue J, Morison J H. 2005. Temperature difference across the Lomonosov Ridge: implications for the Atlantic Water circulation in the Arctic Ocean. Geophys Res Lett, 32(20): L20604, doi: 10.1029/2005GL023982
    Lenn Y D, Wiles P J, Torres-Valdes S, et al. 2009. Vertical mixing at intermediate depths in the Arctic boundary current. Geophys Res Lett, 36(5): L05601, doi: 10.1029/2008GL036792
    Lincoln B J, Rippeth T P, Lenn Y D, et al. 2016. Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys Res Lett, 43(18): 9749-9756,, doi: 10.1002/2016GL070454
    Martin T, Steele M, Zhang J L. 2014. Seasonality and long-term trend of Arctic Ocean surface stress in a model. J Geophys Res, 119(3): 1723-1738
    McLaughlin F, Shimada K, Carmack E, et al. 2005. The hydrography of the southern Canada Basin, 2002. Polar Biol, 28(3): 182-189,, doi: 10.1007/s00300-004-0701-6
    McLaughlin F A, Carmack E C, Williams W J, et al. 2009. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007. J Geophys Res, 114(C1): C00A12, doi: 10.1029/2008JC005001
    Osborn T. R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr, 10: 83-89
    Padman L, Dillon T M. 1987. Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J Geophys Res, 92(C10): 10799-10806
    Padman L, Dillon T M. 1991. Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J Geophys Res, 96(C3): 4769-4782
    Padman L, Erofeeva S. 2004. A barotropic inverse tidal model for the Arctic Ocean. Geophys Res Lett, 31(2): L02303, doi: 10.1029/2003GL019003
    Polyakov I V, Alekseev G V, Timokhov L A, et al. 2004. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Climate, 17(23): 4485-4497
    Polyakov I V, Alexeev V A, Ashik I M, et al. 2011. Fate of early 2000s arctic warm water pulse. Bull Amer Meteor Soc, 92(5): 561-566,, doi: 10.1175/2010BAMS2921.1
    Polyakov I V, Timokhov L A, Alexeev V A, et al. 2010. Arctic Ocean warming contributes to reduced polar ice cap. J Phys Oceanogr, 40(12): 2743-2756,, doi: 10.1175/2010JPO4339.1
    Polyakov I V, Pnyushkov A V, Timokhov L A. 2012. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J Climate, 25(23): 8362-8370
    Proshutinsky A, Krishfield R, Timmermans M L, et al. 2009. Beaufort Gyre freshwater reservoir: state and variability from observations. J Geophys Res, 114(C1): C00A10, doi: 10.1029/2008JC005104
    Rainville L, Lee C M, Woodgate R A. 2011. Impact of wind-driven mixing in the Arctic Ocean. Oceanography, 24(3): 136-145,, doi: 10.5670/oceanog.2011.65
    Rainville L, Winsor P. 2008. Mixing across the Arctic Ocean: microstructure observations during the Beringia 2005 Expedition. Geophys Res Lett, 35(8): L08606, doi: 10.1029/2008GL033532
    Rainville L, Woodgate R A. 2009. Observations of internal wave generation in the seasonally ice-free Arctic. Geophys Res Lett, 36(23): L23604, doi: 10.1029/2009GL041291
    Rippeth T P, Lincoln B J, Lenn Y D, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat Geosci, 8(3): 191-194
    Robertson R. 1999. Mixing and heat transport mechanisms in the upper ocean in the Weddell Sea [dissertation]. Corvallis: Oregon State University
    Shimada K, Kamoshida T, Itoh M, et al. 2006. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett, 33(8): L08605, doi: 10.1029/2005GL025624
    Shimada K, McLaughlin F, Carmack E, et al. 2004. Penetration of the 1990s warm temperature anomaly of Atlantic Water in the Canada Basin. Geophys Res Lett, 31(20): L20301, doi: 10.1029/2004GL020860
    Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res, 113(C2): C02S03, doi: 10.1029/2005JC003384
    Thorpe S A. 2005. The Turbulent Ocean. Cambridge, UK: Cambridge University Press
    Timmermans M L, Toole J, Krishfield R, et al. 2008. Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J Geophys Res, 113(C1): C00A02, doi: 10.1029/2008JC004829
    Tsamados M, Feltham D L, Schroeder D, et al. 2014. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J Phys Oceanogr, 44(5): 1329-1353
    Tschudi M C, Fowler J, Maslanik, et al. 2016. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3. Boulder, Colo: National Snow and Ice Data Center
    Turner J S. 2010. The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. J Phys Oceanogr, 40(1): 249-256,, doi: 10.1175/2009JPO4279.1
    Woodgate R A, Aagaard K, Swift J H, et al. 2005. Pacific ventilation of the Arctic Ocean's lower halocline by upwelling and diapycnal mixing over the continental margin. Geophys Res Lett, 32(18): L18609, doi: 10.1029/2005GL023999
    Woodgate R A, Aagaard K, Swift J H, et al. 2007. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. J Geophys Res, 112(C2): C02005, doi: 10.1029/2005JC003416
    Yamazaki H. 1990. Stratified turbulence near a critical dissipation rate. J Phys Oceanogr, 20(10): 1583-1598
    Yang Jiayan. 2009. Seasonal and interannual variability of downwelling in the Beaufort Sea. J Geophys Res, 114(C1): C00A14, doi: 10.1029/2008JC005084
    Zhao Jinping, Gao Guoping, Jiao Yutian. 2005. Warming in Arctic intermediate and deep waters around Chukchi Plateau and its adjacent regions in 1999. Sci China: Ser D. Earth Sci, 48(8): 1312-1320
    Zhong Wenli, Zhao Jinping. 2014. Deepening of the Atlantic Water core in the Canada Basin in 2003-11. J Phys Oceanogr, 44(9): 2353-2369,, doi: 10.1175/JPO-D-13-084.1
    Zhong Wenli, Zhao Jinping, Shi Jiuxin, et al. 2015. The Beaufort Gyre variation and its impacts on the Canada Basin in 2003-2012. Acta Oceanol Sin, 34(7): 19-31,, doi: 10.1007/s13131-015-0657-0
  • 加载中
计量
  • 文章访问数:  982
  • HTML全文浏览量:  35
  • PDF下载量:  1470
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-09

目录

    /

    返回文章
    返回