Impact of polar lows on synoptic scale variability of Atlantic inflow in the Fram Strait

SUN Ruili GAO Guoping

孙瑞立, 高郭平. 极地低压对费拉姆海峡大西洋入流水天气尺度变化的影响[J]. 海洋学报英文版, 2018, 37(3): 42-50. doi: 10.1007/s13131-018-1199-z
引用本文: 孙瑞立, 高郭平. 极地低压对费拉姆海峡大西洋入流水天气尺度变化的影响[J]. 海洋学报英文版, 2018, 37(3): 42-50. doi: 10.1007/s13131-018-1199-z
SUN Ruili, GAO Guoping. Impact of polar lows on synoptic scale variability of Atlantic inflow in the Fram Strait[J]. Acta Oceanologica Sinica, 2018, 37(3): 42-50. doi: 10.1007/s13131-018-1199-z
Citation: SUN Ruili, GAO Guoping. Impact of polar lows on synoptic scale variability of Atlantic inflow in the Fram Strait[J]. Acta Oceanologica Sinica, 2018, 37(3): 42-50. doi: 10.1007/s13131-018-1199-z

极地低压对费拉姆海峡大西洋入流水天气尺度变化的影响

doi: 10.1007/s13131-018-1199-z
基金项目: The Global Change Research Program of China under contract No. 2015CB953900; the General Program of National Natural Science Foundation of China under contract No. 41276197; the Natural Science Foundation of Zhejiang Province under contract Nos LY18D060004 and LQ18D060001; the Foundation of Zhejiang Education Department under contract No. 1260KZ0417982; the Talent Start Foundation of Zhejiang Gongshang University under contract Nos 1260XJ2317015 and 1260XJ2117015.

Impact of polar lows on synoptic scale variability of Atlantic inflow in the Fram Strait

  • 摘要: 基于1998-2010年期间的锚系浮标数据,费拉姆海峡(78°50'N)大西洋入流水有天气尺度变化。大西洋入流水天气尺度变化主要发生在冬春季节(此处指的是从1月到4月),其显著周期为3-16天,这与巴伦支海处的极地低压有关。在天气尺度上,费拉姆海峡处大西洋入流水的增强(减弱)伴随着巴伦支海极地低压个数的异常减少(增加)。巴伦支海处的极地低压引起的风应力旋度导致Ekman输运,引起巴伦支海海表面高度降低,进一步在巴伦支海周围引起一气旋式环流,然后导致费拉姆海峡处大西洋入流水的减弱。我们的结果突出了极地低压在驱动费拉姆海峡处大西洋入流水的重要性,进而有利于人们加深对大西洋暖水影响北冰洋变化的理解。
  • Aagaard K, Carmack E C. 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research, 94(C10): 14485-14498
    Aksenov Y, Bacon S, Coward A C, et al. 2010. The North Atlantic inflow to the Arctic Ocean: high-resolution model study. Journal of Marine Systems, 79(1–2): 1-22
    Berrisford P, Dee D, Poli P, et al. 2011. The ERA-Interim Archive, Version 2.0. Reading: ECMWF, 23
    Beszczynska-Möller A, Fahrbach E, Schauer U, et al. 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010. ICES Journal of Marine Science, 69(5): 852-863,, doi: 10.1093/icesjms/fss056
    Beszczynska-Möller A, Von Appen W J, Fahrbach E. 2015. Physical oceanography and current meter data from moorings F1-F14 and F15/F16 in the Fram Strait, 1997-2012. PANGAEA, https://doi.org/10.1594/PANGAEA.150016
    Chafik L, Nilsson J, Skagseth Ø, et al. 2015. On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean. Journal of Geophysical Research, 120(12): 7897-7918
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
    Condron A, Renfrew I A. 2013. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nature Geoscience, 6(1): 34-37
    Steur L D, Hansen E, Gerdes R, et al. 2009. Freshwater fluxes in the East Greenland Current: a decade of observations. Geophysical Research Letters, 36(23): L23611
    Dmitrenko I A, Polyakov I V, Kirillov S A, et al. 2008. Toward a warmer Arctic Ocean: spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins. Journal of Geophysical Research, 113(C5): C05023
    Fahrbach E, Meincke J, Østerhus S, et al. 2001. Direct measurements of volume transports through Fram Strait. Polar Research, 20(2): 217-224
    Helland-Hansen B, Nansen F. 1909. The Norwegian Sea, Its Physical Oceanography Based Upon the Norwegian Researches 1900-1904. Kristiania: Det Mallingske Bogtrykkeri, 390
    Holl M M, Bitz C M, Tremblay B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33(23): L23503
    Ionita M, Scholz P, Lohmann G, et al. 2016. Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation. Scientific Reports, 6: 32881
    Jung T, Serrar S, Wang Qiang. 2014. The oceanic response to mesoscale atmospheric forcing. Geophysical Research Letters, 41(4): 1255-1260
    Kawasaki T, Hasumi H. 2016. The inflow of Atlantic water at the Fram Strait and its interannual variability. Journal of Geophysical Research, 121(1): 502-519
    Kug J S, Jeong J H, Jang Y S, et al. 2015. Two distinct influences of Arctic warming on cold winter and springs over North America and East Asia. Nature Geoscience, 8(10): 759-762
    Kumar A, Perlwitz J, Eischeid J, et al. 2010. Contribution of sea ice loss to Arctic amplification. Geophysical Research Letters, 37(21): L21701
    Kvammen Y K. 2014. Polar low trajectories in the Nordic Seas 1999-2013: a statistical analysis using kernel density methods [dissertation]. Norway: UiT the Arctic University of Norway
    Lien V S, Vikebø F B, Skagseth Ø. 2013. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nature Communications, 4: 1488
    Lique C. 2015. Ocean science: Arctic sea ice heated from below. Nature Geoscience, 8(3): 172-173
    Marnela M, Rudels B, Goszczko I, et al. 2016. Fram Strait and Greenland Sea transports, water masses, and water mass transformations 1999-2010 (and beyond). Journal of Geophysical Research, 121(4): 2314-2346
    Maslowski W, Marble D, Walczowski W, et al. 2004. On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. Journal of Geophysical Research, 109(C3): C03032
    Orvik K A, Niiler P. 2002. Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic. Geophysical Research Letters, 29(19): 2-1-2-4
    Overland J E, Wood K R, Wang Muyin. 2011. Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Research, 30(1): 15787
    Polyakov I V, Beszczynska A, Carmack E C, et al. 2005. One more step toward a warmer Arctic. Geophysical Research Letters, 32(17): L17605
    Polyakov I V, Timokhov L A, Alexeev V A, et al. 2010. Arctic ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40(12): 2743-2756
    Rippeth T P, Lincoln B J, Lenn Y D, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3): 191-194
    Rojo M, Claud C, Mallet P E, et al. 2015. Polar low tracks over the Nordic Seas: a 14-winter climatic analysis. Tellus A: Dynamic Meteorology and Oceanography, 67(1): 24660
    Rudels B. 2010. Constraints on exchanges in the Arctic Mediterranean-do they exist and can they be of use?.. Tellus A: Dynamic Meteorology and Oceanography, 62(2): 109-122
    Schauer U, Beszczynska-Möller A, Walczowski W, et al. 2008. Variation of measured heat flow through the Fram strait between 1997 and 2006. In: Dickson R R, Meincke J, Rhines P, eds. Arctic-Subarctic Ocean Fluxes. Dordrecht: Springer, 65-85
    Schauer U, Fahrbach E, Osterhus S, et al. 2004. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. Journal of Geophysical Research, 109(C6): C06026
    Schauer U, Loeng H, Rudels B, et al. 2002. Atlantic Water flow through the Barents and Kara Seas. Deep Sea Research Part I: Oceanographic Research Papers, 49(12): 2281-2298
    Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334-1337
    Smedsrud L H, Ingvaldsen R, Nilsen J E Ø, et al. 2010. Heat in the Barents Sea: transport, storage, and surface fluxes. Ocean Science, 6(1): 219-234
    Spielhagen R F, Werner K, Sorensen S A, et al. 2011. Enhanced modern heat transfer to the Arctic by warm Atlantic Water. Science, 331(6016): 450-453
    Steele M, Boyd T. 1998. Retreat of the cold halocline layer in the Arctic Ocean. Journal of Geophysical Research, 103(C5): 10419-10435
    Stewart R H. 2009. Introduction to Physical Oceanography. Florida: Orange Grove Texts Plus, 139
    Stouffer R J, Yin J, Gregory J M, et al. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19(8): 1365-1387
    Tang Qiuhong, Zhang Xuejun, Yang Xiaohua, et al. 2013. Cold winter and spring extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1): 014036
    Vellinga M, Wood R A. 2002. Global climatic impacts of a collapse of the atlantic thermohaline circulation. Climatic Change, 54(3): 251-267
    Wernli H, Schwierz C. 2006. Surface cyclones in the ERA-40 dataset (1958-2001). Part I: novel identification method and global climatology. Journal of the Atmospheric Sciences, 63(10): 2486-2507
    Wu Peili, Haak H, Wood R, et al. 2008. Simulating the terms in the Arctic hydrological budget. In: Dickson R R, Meincke J, Rhines P, eds. Arctic-Subarctic Ocean Fluxes. Dordrecht: Springer, 363-384
    Zhang Xiangdong, Walsh J E, Zhang Jing, et al. 2004. Climatology and interannual variability of arctic cyclone activity: 1948-2002. Journal of Climate, 17(12): 2300-2317
    Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. 2015. Arctic amplification produced by sea ice retreat and its global climate effects. Advances in Earth Science (in Chinese), 30(9): 985-995
  • 加载中
计量
  • 文章访问数:  808
  • HTML全文浏览量:  32
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18

目录

    /

    返回文章
    返回